基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Previously, fault diagnosis of fixed or steady state mechanical failures (e.g., pumps in nuclear power plant turbines, engines or other key equipment) applied spectrum analysis (e.g., fast Fourier transform, FFT) to extract the frequency features as the basis for identifying the causes of failure types. However, mechanical equipment for increasingly instant speed variations (e.g., wind turbine transmissions or the mechanical arms used in 3C assemblies, etc.) mostly generate non-stationary signals, and the signal features must be averaged with analysis time which makes it difficult to identify the causes of failures. This study proposes a time frequency order spectrum method combining the short-time Fourier transform (STFT) and speed frequency order method to capture the order features of non-stationary signals. Such signal features do not change with speed, and are thus effective in identifying faults in mechanical components under non-stationary conditions. In this study, back propagation neural networks (BPNN) and time frequency order spectrum methods were used to verify faults diagnosis and obtained superior diagnosis results in non-stationary signals of gear-rotor systems.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Feature Extraction Techniques of Non-Stationary Signals for Fault Diagnosis in Machinery Systems
来源期刊 信号与信息处理(英文) 学科 医学
关键词 NON-STATIONARY Signal Short-Time FOURIER TRANSFORM BACK PROPAGATION Neural Network Time Frequency Order Spectrum
年,卷(期) 2012,(1) 所属期刊栏目
研究方向 页码范围 16-25
页数 10页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
NON-STATIONARY
Signal
Short-Time
FOURIER
TRANSFORM
BACK
PROPAGATION
Neural
Network
Time
Frequency
Order
Spectrum
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信号与信息处理(英文)
季刊
2159-4465
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
301
总下载数(次)
0
总被引数(次)
0
论文1v1指导