基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
An essential part of any activity recognition system claiming be truly real-time is the ability to perform feature extraction in real-time. We present, in this paper, a quite simple and computationally tractable approach for real-time human activity recognition that is based on simple statistical features. These features are simple and relatively small, accordingly they are easy and fast to be calculated, and further form a relatively low-dimensional feature space in which classification can be carried out robustly. On the Weizmann publicly benchmark dataset, promising results (i.e. 97.8%) have been achieved, showing the effectiveness of the proposed approach compared to the-state-of-the-art. Furthermore, the approach is quite fast and thus can provide timing guarantees to real-time applications.
推荐文章
Are spatial distributions of major elements in soil influenced by human landscapes?
Major elements
Spatial distribution
Geographical background
Human landscape
Geographic information system
Remote sensing
Using electrogeochemical approach to explore buried gold deposits in an alpine meadow-covered area
Electrogeochemistry
Buried mineral deposit
Ideal anomaly model
Alpine-meadow covered
Ihunze
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A Fast Statistical Approach for Human Activity Recognition
来源期刊 智能科学国际期刊(英文) 学科 工学
关键词 Activity RECOGNITION MOTION Analysis STATISTICAL MOMENTS VIDEO INTERPRETATION
年,卷(期) 2012,(1) 所属期刊栏目
研究方向 页码范围 9-15
页数 7页 分类号 TP39
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Activity
RECOGNITION
MOTION
Analysis
STATISTICAL
MOMENTS
VIDEO
INTERPRETATION
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能科学国际期刊(英文)
季刊
2163-0283
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
102
总下载数(次)
0
总被引数(次)
0
论文1v1指导