基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
地磁感应波形通过数据融合初步提取出结构、频谱和数值3个范畴的特征.利用Filter-Filter-wrapper模式对初步提取的特征进行组合式特征评估,即采用改进的ReliefF算法挑选最适合车型分类的不冗余特征,再建立Top-K机制的交叉验证搜索最优特征组合.引入基于聚类支持向量机(C-SVM)的车型分类算法,并采用微粒群算法对C-SVM算子中的核函数参数和惩罚系数进行了优化,构建了微粒群优化的C-SVM车型分类器.实验结果显示该车型分类方法能显著提高数据挖掘的效率,机器学习的能力,并且具备较高的车型分类准确率.
推荐文章
基于聚类算法和层次支持向量机的人脸识别方法
聚类算法
层次支持向量机
免疫算法
小波变换
基于支持向量机的煤岩界面识别方法
煤岩界面识别
小波包分解
支持向量机
基于支持向量机的轿车车型识别
支持向量机
轿车
识别
特征
基于支持向量机的通信信号调制识别方法研究
支持向量机
模式识别
调制信号
识别分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于聚类支持向量机的车型识别方法研究
来源期刊 交通信息与安全 学科 交通运输
关键词 地磁检测器 车型分类 特征选择 ReliefF算法 聚类支持向量机 微粒群算法
年,卷(期) 2012,(5) 所属期刊栏目 方法研究与探讨
研究方向 页码范围 55-59,64
页数 分类号 U491
字数 5135字 语种 中文
DOI 10.3963/j.issn.1674-4861.2012.05.012
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杜豫川 同济大学道路与交通工程教育部重点实验室 84 800 16.0 23.0
2 何尧 同济大学道路与交通工程教育部重点实验室 3 9 2.0 3.0
3 孙逸凡 同济大学道路与交通工程教育部重点实验室 1 7 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (15)
共引文献  (1862)
参考文献  (7)
节点文献
引证文献  (7)
同被引文献  (22)
二级引证文献  (11)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(2)
  • 引证文献(2)
  • 二级引证文献(0)
2015(7)
  • 引证文献(3)
  • 二级引证文献(4)
2016(3)
  • 引证文献(0)
  • 二级引证文献(3)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
2018(4)
  • 引证文献(2)
  • 二级引证文献(2)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
地磁检测器
车型分类
特征选择
ReliefF算法
聚类支持向量机
微粒群算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
交通信息与安全
双月刊
1674-4861
42-1781/U
大16开
武汉市武昌和平大道1178号
38-94
1983
chi
出版文献量(篇)
3739
总下载数(次)
14
总被引数(次)
29572
论文1v1指导