基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
With theincreasing worldwide network attacks, intrusion detection (ID) hasbecome a popularresearch topic inlast decade.Several artificial intelligence techniques such as neural networks and fuzzy logichave been applied in ID. The results are varied. Theintrusion detection accuracy is themain focus for intrusion detection systems (IDS). Most research activities in the area aiming to improve the ID accuracy. In this paper, anartificial immune system (AIS) based network intrusion detection scheme is proposed. An optimized feature selection using Rough Set (RS) theory is defined. The complexity issue is addressed in the design of the algorithms. The scheme is tested on the widely used KDD CUP 99 dataset. The result shows that theproposed scheme outperforms other schemes in detection accuracy.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 An Improved Artificial Immune System-Based Network Intrusion Detection by Using Rough Set
来源期刊 通讯与网络(英文) 学科 工学
关键词 INTRUSION Detection NEGATIVE Selection Artificial IMMUNE System KDD CUP 99
年,卷(期) 2012,(1) 所属期刊栏目
研究方向 页码范围 41-47
页数 7页 分类号 TP39
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
INTRUSION
Detection
NEGATIVE
Selection
Artificial
IMMUNE
System
KDD
CUP
99
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
通讯与网络(英文)
季刊
1949-2421
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
427
总下载数(次)
0
总被引数(次)
0
论文1v1指导