基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Lignin and cellulose chemicals were used as artificial biomass components to make-up a simulated biomass. Alkali and Alkaline Earth Metal (AAEM) as well as volatile matter contents in these chemicals were much different from each other. Co-gasification of coal with simulated biomass shows improved conversion characteristics in comparison to the average calculated from separate conversion of coal and simulated biomass. Two conversion synergetic peaks were observed whereby the first peak occurred around 400℃ while the second one occurred above 800℃. Although co-gasification of coal with lignin that has high AAEM content also shows two synergy peaks, the one at higher temperature is dominant. Co-gasification of coal with cellulose shows only a single synergy peak around 400℃ indicating that synergy at low temperature is related with interaction of volatiles. Investigation of morphology changes during gasification of lignin and coal, suggests that their low reactivity is associated with their solid shape maintained even at high temperature.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Conversion Synergies during Steam Co-Gasification of Ligno-Cellulosic Simulated Biomass with Coal
来源期刊 可持续生物质能源系统(英文) 学科 医学
关键词 CO-GASIFICATION SYNERGY BIOMASS Cellulose Lignin
年,卷(期) 2012,(4) 所属期刊栏目
研究方向 页码范围 97-103
页数 7页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
CO-GASIFICATION
SYNERGY
BIOMASS
Cellulose
Lignin
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
可持续生物质能源系统(英文)
季刊
2165-400X
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
144
总下载数(次)
0
总被引数(次)
0
论文1v1指导