基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
图像分割是模式识别、图像理解、计算机视觉等领域的重要研究内容.基于支持向量机(Support Vector Machine,SVM)的方法现已广泛应用于图像分割,但其在训练样本的选取上大多是人工选择,这降低了图像分割的自适应性,且影响了SVM的分类性能.提出一种基于训练样本自动选取的SVM彩色图像分割方法,算法首先使用模糊C均值(Fuzzy C-Means,FCM)聚类算法自动获取训练样本,然后分别提取图像颜色特征和纹理特征,将其作为SVM模型训练样本的特征属性进行训练,最后用训练好的分类器对图像进行分割.实验结果表明,提出的方法可取得很好的分割结果.
推荐文章
一种结合训练样本筛选的SVM图像分割方法
支持向量机
样本筛选
图像分割
SVM图像分割方法的研究
支持向量机
全局门限处理
SVM图像
图像分割
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于训练样本自动选取的SVM彩色图像分割方法
来源期刊 计算机科学 学科 工学
关键词 图像分割 支持向量机 模糊C均值
年,卷(期) 2012,(11) 所属期刊栏目 图形图像
研究方向 页码范围 267-271
页数 分类号 TP399
字数 4963字 语种 中文
DOI 10.3969/j.issn.1002-137X.2012.11.063
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王文剑 山西大学计算机与信息技术学院 97 798 14.0 23.0
5 白雪飞 山西大学计算机与信息技术学院 9 105 8.0 9.0
6 张荣 山西大学计算机与信息技术学院 2 15 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (15)
共引文献  (52)
参考文献  (8)
节点文献
引证文献  (13)
同被引文献  (40)
二级引证文献  (20)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1978(1)
  • 参考文献(1)
  • 二级参考文献(0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(4)
  • 参考文献(1)
  • 二级参考文献(3)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(3)
  • 引证文献(3)
  • 二级引证文献(0)
2016(3)
  • 引证文献(3)
  • 二级引证文献(0)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(12)
  • 引证文献(2)
  • 二级引证文献(10)
2019(10)
  • 引证文献(0)
  • 二级引证文献(10)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
图像分割
支持向量机
模糊C均值
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机科学
月刊
1002-137X
50-1075/TP
大16开
重庆市渝北区洪湖西路18号
78-68
1974
chi
出版文献量(篇)
18527
总下载数(次)
68
总被引数(次)
150664
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
山西省自然科学基金
英文译名:Shanxi Natural Science Foundation
官方网址:http://sxnsfc.sxinfo.gov.cn/sxnsf/index.aspx
项目类型:
学科类型:
论文1v1指导