基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对建模数据中包含噪声和离群点会降低相应软测量模型准确性的问题,提出一种结合2层变量空间分析的预处理方法.用多变量修剪法在原始变量空间预处理;并提出支持向量聚类(SVC)的预处理方法,将建模数据映射到高维特征空间,构造一超球体来排除离群点.SVC无需像传统预处理方法假设数据服从正态或近似正态分布,更符合实际的高炉过程.预处理后的数据再用支持向量回归建立软测量模型.在一工业高炉铁水硅含量的建模和预报实验结果表明,所提出方法能够更有效排除离群点,且提高了支持向量回归模型的鲁棒性和预报性能.
推荐文章
基于支持向量回归机的电能质量评估
电能质量
评估模型
支持向量机
支持向量回归机
基于粒子群算法优化支持向量回归的水质预测模型
水质监测
支持向量回归机
非线性惯性权重
粒子群优化算法
组合模型
基于自校正支持向量回归的锌产量在线预报模型及应用
密闭鼓风炉
支持向量回归
SMO
锌产量
在线预报
利用PSO-SA混合优化支持向量回归的径流预报模型研究
支持向量回归
粒子群
模拟退火
融合改进
径流预报模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 用于高炉铁水质量预报的改进支持向量回归
来源期刊 浙江大学学报(工学版) 学科 工学
关键词 数据预处理 支持向量聚类 软测量 支持向量回归 硅含量
年,卷(期) 2012,(5) 所属期刊栏目 自动化技术、电气工程
研究方向 页码范围 830-836
页数 7页 分类号 TP301.6|TQ02
字数 语种 中文
DOI 10.3785/j.issn.1008-973X.2012.05.009
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (42)
共引文献  (49)
参考文献  (17)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1976(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(5)
  • 参考文献(0)
  • 二级参考文献(5)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(7)
  • 参考文献(0)
  • 二级参考文献(7)
2001(3)
  • 参考文献(1)
  • 二级参考文献(2)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(5)
  • 参考文献(1)
  • 二级参考文献(4)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(9)
  • 参考文献(5)
  • 二级参考文献(4)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(5)
  • 参考文献(5)
  • 二级参考文献(0)
2009(4)
  • 参考文献(4)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
数据预处理
支持向量聚类
软测量
支持向量回归
硅含量
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
浙江大学学报(工学版)
月刊
1008-973X
33-1245/T
大16开
杭州市浙大路38号
32-40
1956
chi
出版文献量(篇)
6865
总下载数(次)
6
总被引数(次)
81907
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导