首先简要介绍了基于油中溶解气体DGA( Dissolved Gas - in - oil Analysis)的变压器故障诊断机理,然后介绍了反向传播神经网络BPNN( Back - propagation Neural Network)的网络结构、学习算法和训练流程,并结合变压器故障实际特点,分析了输入输出模式的确定、隐含层设计、传递函数和训练函数的选择对于整个网络设计的重要性,通过在MATLAB中神经网络工具箱平台上的仿真比较找出合理的参数,从而建立基于BPNN的变压器故障诊断模型,最后通过对验证样本的仿真诊断结果对比,说明了该模型在实际应用中的有效性.