基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了充分挖掘样本内在的几何结构和蕴含的判别信息来指导样本数据分类,提出一种局部敏感的判别直推学习方法.该方法将局部敏感辨析(LSDA)的基本原理引入到直推学习中,在直推学习的正则化框架中同时引入有助于分类的样本局部结构信息和判别信息,在判别信息指导下构建了类内图和类间图来刻画类内紧性和类间散性,从而在每个局部邻域中进一步最大化类间样本的间隔.同时,用数学的形式给出了目标函数的解析表达,在几个典型数据集上的实验结果表明,相较传统的基于图的半监督学习算法,该方法能取得更高的分类效果.
推荐文章
局部感知的类限制极限学习机
局部感知
极限学习机
自动编码器
神经网络
代价敏感的直推式支持向量机算法
直推式支持向量机
代价敏感
不均衡数据集
基于类间判别的矩阵学习机
面向矩阵模式的分类设计
分簇
正则化项学习
模式识别
基于并行学习的多层极限学习机
神经网络
稀疏编码
极限学习机
并行学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 局部敏感判别直推学习机
来源期刊 浙江大学学报(工学版) 学科 工学
关键词 局部敏感辨析 直推学习 图方法 正则化
年,卷(期) 2012,(6) 所属期刊栏目 计算机技术
研究方向 页码范围 987-994
页数 8页 分类号 TP181
字数 语种 中文
DOI 10.3785/j.issn.1008-973X.2012.06.005
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (35)
共引文献  (57)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(5)
  • 参考文献(0)
  • 二级参考文献(5)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(6)
  • 参考文献(2)
  • 二级参考文献(4)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(3)
  • 参考文献(2)
  • 二级参考文献(1)
2010(4)
  • 参考文献(4)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
局部敏感辨析
直推学习
图方法
正则化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
浙江大学学报(工学版)
月刊
1008-973X
33-1245/T
大16开
杭州市浙大路38号
32-40
1956
chi
出版文献量(篇)
6865
总下载数(次)
6
总被引数(次)
81907
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导