原文服务方: 计算机应用研究       
摘要:
中文情感分类一般分成基于情感词典和基于特征分类两种方法进行研究,但没有考虑过将两种方法得到的特征进行融合来提高分类效果.基于特征分类的方法忽视了特征词在情感词典的褒贬性以及词倾向性的强弱.用基于特征分类方法得到的文本特征建立朴素贝叶斯模型,根据特征词在情感词典中的褒贬性及其通过点对互信息方法得到的词性强弱调整情感词的正负后验概率权重,实现两种特征的融合,提高分类效果并降低了特征维数.
推荐文章
基于情感特征分类的语音情感识别研究
语音情感识别
情感特征分类
改进D-S证据理论
证据信任度信息熵
动态先验权重
数据融合
多特征融合的图文微博情感分析
情感分析
微博
多特征融合
神经网络
图文融合
基于多特征融合的恶意软件分类方案
数据安全与计算机安全
恶意软件分类
静态分析
多特征融合
集成学习
基于多特征和多分类器融合的语种识别
语种识别
多分类器
决策融合
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多特征融合的汉语情感分类研究
来源期刊 计算机应用研究 学科
关键词 文本情感分类 情感词典 点对互信息 特征选择 朴素贝叶斯
年,卷(期) 2012,(1) 所属期刊栏目 算法研究探讨
研究方向 页码范围 98-100
页数 分类号 TP391
字数 语种 中文
DOI 10.3969/j.issn.1001-3695.2012.01.027
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 钟将 重庆大学计算机学院 63 631 14.0 23.0
2 邓时滔 重庆大学计算机学院 1 10 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (24)
共引文献  (478)
参考文献  (4)
节点文献
引证文献  (10)
同被引文献  (33)
二级引证文献  (10)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(4)
  • 参考文献(1)
  • 二级参考文献(3)
2008(4)
  • 参考文献(1)
  • 二级参考文献(3)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(3)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(3)
  • 二级引证文献(0)
2012(3)
  • 引证文献(3)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(2)
  • 引证文献(0)
  • 二级引证文献(2)
2015(1)
  • 引证文献(0)
  • 二级引证文献(1)
2016(6)
  • 引证文献(4)
  • 二级引证文献(2)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(3)
  • 引证文献(0)
  • 二级引证文献(3)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
文本情感分类
情感词典
点对互信息
特征选择
朴素贝叶斯
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
论文1v1指导