基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
合成孔径雷达(Synthetic Aperture Radar,SAR)图像自动目标识别的前提条件之一是能够准确地提取感兴趣区域(Region of interest,ROI),因此能够获取ROI中心的聚类算法是SAR图像处理的关键算法之一.为了尽可能降低检测图像中的虚警以及减少聚类及相应的鉴别算法的计算量,本文提出一种基于先验信息的网格聚类算法,该方法首先通过目标和杂波的形状统计信息估计网格聚类参数,然后利用其对检测图像进行网格划分,并引入目标的占空比特征去除杂波,最后通过粗提取和精提取两种方法计算得到聚类中心.仿真和实测数据处理结果表明,该算法能够对检测目标进行有效聚类并去除大部分杂波,同时极大地减少了鉴别的计算量,且简化了传统ROI中心提取流程.
推荐文章
基于先验信息和谱分析的聚类融合算法
聚类融合
先验信息
成对限制
谱聚类
基于聚类的SAR图像快速目标检测
合成孔径雷达图像
目标检测
恒虚警率检测
Mean Shift聚类
应用于彩色图像分割的半监督多目标进化聚类算法
彩色图像分割
半监督
多目标进化算法
最大熵
基于稀疏自编码特征聚类算法的图像窜改检测
稀疏自编码
K-means聚类算法
同图复制
块匹配
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 结合目标先验信息的检测图像网格聚类算法
来源期刊 信号处理 学科 工学
关键词 先验信息 网格聚类 时间复杂度
年,卷(期) 2012,(11) 所属期刊栏目 算法研究
研究方向 页码范围 1565-1574
页数 分类号 TN95
字数 6516字 语种 中文
DOI 10.3969/j.issn.1003-0530.2012.11.011
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 黄晓涛 国防科学技术大学电子科学与工程学院 56 231 8.0 11.0
2 王玉明 国防科学技术大学电子科学与工程学院 6 15 2.0 3.0
3 宋千 国防科学技术大学电子科学与工程学院 19 68 4.0 6.0
4 王鹏宇 国防科学技术大学电子科学与工程学院 1 6 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (7)
共引文献  (1)
参考文献  (7)
节点文献
引证文献  (6)
同被引文献  (3)
二级引证文献  (6)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(3)
  • 参考文献(3)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(2)
  • 引证文献(2)
  • 二级引证文献(0)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(4)
  • 引证文献(2)
  • 二级引证文献(2)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
先验信息
网格聚类
时间复杂度
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信号处理
月刊
1003-0530
11-2406/TN
大16开
北京鼓楼西大街41号
18-143
1985
chi
出版文献量(篇)
5053
总下载数(次)
13
总被引数(次)
32728
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导