基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
This paper presents an enhanced Particle Swarm Optimization (PSO) algorithm applied to the reactive power compensation (RPC) problem. It is based on the combination of Genetic Algorithm (GA) and PSO. Our approach integrates the merits of both genetic algorithms (GAs) and particle swarm optimization (PSO) and it has two characteristic features. Firstly, the algorithm is initialized by a set of a random particle which traveling through the search space, during this travel an evolution of these particles is performed by a hybrid PSO with GA to get approximate no dominated solution. Secondly, to improve the solution quality, dynamic version of pattern search technique is implemented as neighborhood search engine where it intends to explore the less-crowded area in the current archive to possibly obtain more nondominated solutions. The proposed approach is carried out on the standard IEEE 30-bus 6-generator test system. The results demonstrate the capabilities of the proposed approach to generate true and well-distributed Pareto optimal nondominated solutions of the multiobjective RPC.
推荐文章
PCI和Local总线冲突问题的研究
PCI总线
Local总线
总线冲突
FIFO
基于Swarm平台的装备体系建模研究
Swarm
Agent
装备体系
建模
基于多Agent计算机仿真实验平台Swarm的综述
Swarm
复杂系统
人工世界
计算机仿真模拟
Agent
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Enhanced Particle Swarm Optimization Based Local Search for Reactive Power Compensation Problem
来源期刊 应用数学(英文) 学科 工学
关键词 MULTIOBJECTIVE OPTIMIZATION PARTICLE SWARM OPTIMIZATION Local SEARCH
年,卷(期) yysxyw_2012,(10) 所属期刊栏目
研究方向 页码范围 1276-1284
页数 9页 分类号 TP1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
MULTIOBJECTIVE
OPTIMIZATION
PARTICLE
SWARM
OPTIMIZATION
Local
SEARCH
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
应用数学(英文)
月刊
2152-7385
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
1878
总下载数(次)
0
论文1v1指导