图像中存在的纹理、颜色和形状等异构视觉特征,在表示特定高层语义时所起作用的重要程度不同,为了在图像标注过程中更加有效地利用这些异构特征,提出了一种基于组稀疏(group sparsity)的多核学习方法(multiple kernel learning with group sparsity,简称MKLGS),为不同图像语义选择不同的组群特征.MKLGS先将包含多种异构特征的非线性图像数据映射到一个希尔伯特空间,然后利用希尔伯特空间中的核函数以及组LASSO(groupLASSO)对每个图像类别选择最具区别性特征的集合,最终训练得到分类模型对图像进行标注.通过与目前其他图像标注算法进行对比,实验结果表明,基于组稀疏的多核学习方法在图像标注中能取得很好的效果.