原文服务方: 西安交通大学学报       
摘要:
提出了一种谱聚类目标状态提取方法来实现概率假设密度(PHD)滤波中序贯蒙特卡罗(SMC)实现方式的多目标状态估计.该方法利用PHD滤波SMC实现方式输出的大量的加权粒子点间的相似度关系建立相似矩阵,通过变换得到拉普拉斯矩阵,进而对拉普拉斯矩阵进行特征分解,以实现粒子点的聚类,再在每类中寻找粒子的聚类点作为多目标状态的估计值,同时为了减小计算量,利用Nystr(o)m逼近方法求解特征向量.仿真实验表明,PHD滤波的谱聚类目标状态提取方法的估计精度比k均值目标状态提取方法提高了60%以上.
推荐文章
多目标跟踪的高斯混合概率假设密度滤波算法
随机有限集
多目标跟踪
高斯混合
概率假设密度
用于机动目标跟踪的多模型概率假设密度滤波器
机动目标跟踪
概率假设密度
多模型
估计
机动目标概率假设密度滤波算法及其比较
多目标跟踪
概率假设密度
随机集
联合概率数据关联
应用Dirichlet分布的概率假设密度多目标跟踪
多目标跟踪
概率假设密度
Dirichlet分布
状态提取
k-d树
期望极大化
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 概率假设密度滤波的谱聚类目标状态提取方法
来源期刊 西安交通大学学报 学科
关键词 多目标状态估计 概率假设密度 状态提取 谱聚类 Nystr(o)m逼近
年,卷(期) 2012,(2) 所属期刊栏目
研究方向 页码范围 1-5,118
页数 分类号 TP274
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 韩崇昭 西安交通大学智能网络与网络安全教育部重点实验室 349 5634 35.0 59.0
10 闫小喜 西安交通大学智能网络与网络安全教育部重点实验室 6 18 3.0 4.0
14 张慧 西安交通大学智能网络与网络安全教育部重点实验室 32 145 7.0 11.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (27)
共引文献  (10)
参考文献  (12)
节点文献
引证文献  (8)
同被引文献  (19)
二级引证文献  (20)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(1)
  • 二级参考文献(1)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(4)
  • 参考文献(1)
  • 二级参考文献(3)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(6)
  • 参考文献(1)
  • 二级参考文献(5)
2006(5)
  • 参考文献(2)
  • 二级参考文献(3)
2007(4)
  • 参考文献(3)
  • 二级参考文献(1)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(4)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(4)
  • 二级引证文献(0)
2012(4)
  • 引证文献(4)
  • 二级引证文献(0)
2013(5)
  • 引证文献(2)
  • 二级引证文献(3)
2014(4)
  • 引证文献(0)
  • 二级引证文献(4)
2015(1)
  • 引证文献(0)
  • 二级引证文献(1)
2016(4)
  • 引证文献(1)
  • 二级引证文献(3)
2017(3)
  • 引证文献(0)
  • 二级引证文献(3)
2018(6)
  • 引证文献(1)
  • 二级引证文献(5)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
多目标状态估计
概率假设密度
状态提取
谱聚类
Nystr(o)m逼近
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
西安交通大学学报
月刊
0253-987X
61-1069/T
大16开
1960-01-01
chi
出版文献量(篇)
7020
总下载数(次)
0
总被引数(次)
81310
论文1v1指导