基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对高光谱影像近邻波段高度相关,直接在高维空间分类并非最优的问题,提出了基于最速上升和关联向量机(SA-RVM)的高光谱影像分类算法.使用最速上升(SA)算法搜索最优特征子空间,剔除冗余特征;然后,在特征子空间中训练RVM并分类.对4套测试数据进行的实验表明,SA选择的特征子空间中,RVM分类精度提高了2.5%以上,与支持向量机(SVM)相当.对训练样本较少的2套数据,精度提高了5.63%和6.2%.此外,SA-RVM的解稀疏,预测未知样本类别属性所需时间短.总体来看,SA-RVM精度高、判别速度快,适合处理大场景高光谱影像.
推荐文章
基于最速上升算法的超光谱图像波段选择搜索算法
超光谱图像
特征选择
最速上升搜索算法
谐波能量谱特征向量的高光谱影像Bayes分类
高光谱影像
频率域变换
谐波分析
能量谱
Bayes准则
监督分类
结合纹理信息Hyperion高光谱影像分类
森林测计学
遥感
分类
高光谱
端元
纹理
基于独立分量分析和相关向量机的高光谱数据分类
高光谱数据分类
虚拟维数
独立分量分析
相关向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 最速上升关联向量机高光谱影像分类
来源期刊 光学精密工程 学科 工学
关键词 高光谱图像 影像分类 最速上升 关联向量机
年,卷(期) 2012,(6) 所属期刊栏目 信息科学
研究方向 页码范围 1398-1405
页数 分类号 TP751.1
字数 4396字 语种 中文
DOI 10.3788/OPE.20122006.1398
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 田联房 华南理工大学自动化科学与工程学院 145 1115 17.0 25.0
2 董超 华南理工大学自动化科学与工程学院 3 8 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (9)
共引文献  (7)
参考文献  (9)
节点文献
引证文献  (7)
同被引文献  (45)
二级引证文献  (38)
1968(2)
  • 参考文献(1)
  • 二级参考文献(1)
1999(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(2)
  • 二级参考文献(1)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(6)
  • 引证文献(3)
  • 二级引证文献(3)
2016(4)
  • 引证文献(0)
  • 二级引证文献(4)
2017(9)
  • 引证文献(0)
  • 二级引证文献(9)
2018(14)
  • 引证文献(2)
  • 二级引证文献(12)
2019(7)
  • 引证文献(0)
  • 二级引证文献(7)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
高光谱图像
影像分类
最速上升
关联向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
光学精密工程
月刊
1004-924X
22-1198/TH
大16开
长春市东南湖大路3888号
12-166
1959
chi
出版文献量(篇)
6867
总下载数(次)
10
总被引数(次)
98767
论文1v1指导