原文服务方: 计算机应用研究       
摘要:
针对分类器的构建,在保证基分类器准确率和差异度的基础上,提出了采用差异性度量特征选择的多分类器融合算法(multi-classifier fusion algorithm based on diversity measure for feature selection,MFA-DMFS).该算法的基本思想是在原始特征集中采用Relief特征评估结果按权值大小选择特征,构造特征子集,通过精调使各特征子集间满足一定的差异性,从而构建最优的基分类器.MFA-DMFS不但能提高基分类器的准确率,而且保持基分类器间的差异,克服差异性和平均准确率之间存在的相互制约,并实现这两方面的平衡.在UCI数据集上与基于Bagging、Boosting算法的多分类器融合系统进行了对比实验,实验结果表明,该算法在准确率和运行速度方面优于Bagging和Boosting算法,此外在图像数据集上的检索实验也取得了较好的分类效果.
推荐文章
一种自适应子融合集成多分类器方法
分类器联合
决策置信度
决策支持度
一种新的模糊支持向量机多分类算法
支持向量机
模糊支持向量机
一对多组合
隶属函数
多分类算法
一种新的图像分类方法研究
视觉描述符
分类器
融合
特征提取
模糊神经网络
基于SVM的一种新的分类器设计方法
小样本数据
SVM分类器
分类准确率
半监督学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 MFA-DMFS:一种新的多分类器融合方法及其应用研究
来源期刊 计算机应用研究 学科
关键词 特征选择 差异性度量 分类器融合 图像检索 PCA 仿真
年,卷(期) 2012,(2) 所属期刊栏目 算法研究探讨
研究方向 页码范围 522-526
页数 分类号 TP391
字数 语种 中文
DOI 10.3969/j.issn.1001-3695.2012.02.032
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 梁军 江苏大学汽车工程研究院 34 164 7.0 11.0
5 陈龙 江苏大学汽车工程研究院 368 3236 25.0 34.0
9 胥正川 复旦大学管理学院 21 399 10.0 19.0
10 汪若尘 江苏大学汽车工程研究院 111 908 17.0 23.0
14 胥杜杰 1 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (43)
共引文献  (83)
参考文献  (10)
节点文献
引证文献  (3)
同被引文献  (0)
二级引证文献  (0)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(1)
  • 二级参考文献(1)
1994(4)
  • 参考文献(1)
  • 二级参考文献(3)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(4)
  • 参考文献(0)
  • 二级参考文献(4)
1998(4)
  • 参考文献(1)
  • 二级参考文献(3)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(1)
  • 二级参考文献(2)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(7)
  • 参考文献(0)
  • 二级参考文献(7)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(4)
  • 参考文献(1)
  • 二级参考文献(3)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(4)
  • 参考文献(4)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
特征选择
差异性度量
分类器融合
图像检索
PCA
仿真
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
论文1v1指导