原文服务方: 西安交通大学学报       
摘要:
为提高多分类器系统分类的性能,设计了一种使用最短特征线段分类器的多分类器系统.依据最短特征线段分类算法工作机理,利用特征线段长度表征样本隶属于各个类别的可能性,即模糊隶属度,对成员分类器输出形式完成由摘要级至度量级的重新建模,更多地保留输出细节以减少信息损失,进而利用基于模糊的证据融合规则实现成员分类器的度量级融合,通过隶属度到mass函数的转换,利用模糊-证据融合规则实现多分类器系统的构造,进一步提高了多分类器系统分类性能.采用人工数据集和UCI数据集设计了对比实验,实验表明,与其他邻域型分类器构造的多分类器系统相比,新多分类器系统能有效提升分类正确率.
推荐文章
利用证据神经网络的多分类器系统构造
神经网络
多分类器系统
证据理论
信度函数
基于多特征和多分类器融合的语种识别
语种识别
多分类器
决策融合
基于多重特征选择和多分类器融合的文本层次分类研究
文本自动分类
文本层次分类
多重特征选择
可信度函数
多分类器融合
利用特征子空间评价与多分类器融合的高光谱图像分类
高光谱图像
多分类器融合
自适应子空间分解
加权表决
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 最短特征线段多分类器系统设计
来源期刊 西安交通大学学报 学科
关键词 特征线段 隶属度 多分类器系统 证据理论
年,卷(期) 2015,(9) 所属期刊栏目
研究方向 页码范围 77-83
页数 7页 分类号 TP391
字数 语种 中文
DOI 10.7652/xjtuxb201509014
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 韩德强 西安交通大学智能网络与网络安全教育部重点实验室 27 621 12.0 24.0
2 杨艺 西安交通大学机械结构强度与振动国家重点实验室 16 460 10.0 16.0
3 丁建坤 西安交通大学智能网络与网络安全教育部重点实验室 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (72)
共引文献  (40)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1967(1)
  • 参考文献(1)
  • 二级参考文献(0)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(1)
  • 二级参考文献(1)
1994(3)
  • 参考文献(0)
  • 二级参考文献(3)
1995(3)
  • 参考文献(0)
  • 二级参考文献(3)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(4)
  • 参考文献(1)
  • 二级参考文献(3)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(7)
  • 参考文献(1)
  • 二级参考文献(6)
2008(5)
  • 参考文献(1)
  • 二级参考文献(4)
2009(7)
  • 参考文献(0)
  • 二级参考文献(7)
2010(8)
  • 参考文献(2)
  • 二级参考文献(6)
2011(6)
  • 参考文献(2)
  • 二级参考文献(4)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(6)
  • 参考文献(0)
  • 二级参考文献(6)
2014(3)
  • 参考文献(2)
  • 二级参考文献(1)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
特征线段
隶属度
多分类器系统
证据理论
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
西安交通大学学报
月刊
0253-987X
61-1069/T
大16开
1960-01-01
chi
出版文献量(篇)
7020
总下载数(次)
0
总被引数(次)
81310
论文1v1指导