基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统协同过滤算法无法及时反映用户兴趣变化的情况,将人脑的记忆和遗忘特性引入到个性化推荐中,提出基于记忆效应的协同过滤推荐算法.利用短时记忆体现用户近期兴趣变化,应用长时记忆强调用户早期兴趣的重要性,给出将短时记忆和长时记忆相结合的调和记忆,使推荐系统可以自适应地跟踪用户兴趣变化.实验结果表明,与CF算法、SCF算法和AUICF算法相比,该算法的推荐精度更高、收敛速度更快.
推荐文章
基于密度的动态协同过滤图书推荐算法
协同过滤
个性化推荐
动态
相似度
基于用户引力的协同过滤推荐算法
推荐算法
协同过滤推荐
万有引力定律
社会标签
基于用户历史行为的协同过滤推荐算法
数据挖掘
协同过滤
用户偏好
项目相似度
个性化推荐
基于标签分类的协同过滤推荐算法
协同过滤
矩阵分解
交替最小二乘法
迭代投影寻踪
监督学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于记忆效应的协同过滤推荐算法
来源期刊 计算机工程 学科 工学
关键词 协同过滤 记忆效应 记忆元 兴趣偏好 个性化推荐
年,卷(期) 2012,(23) 所属期刊栏目 软件技术与数据库
研究方向 页码范围 63-66
页数 4页 分类号 TP18
字数 4538字 语种 中文
DOI 10.3969/j.issn.1000-3428.2012.23.015
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王洪国 山东师范大学信息科学与工程学院 44 455 13.0 19.0
2 杨福萍 山东师范大学信息科学与工程学院 3 47 3.0 3.0
6 董树霞 6 42 3.0 6.0
7 赵学臣 山东师范大学信息科学与工程学院 9 74 5.0 8.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (23)
共引文献  (232)
参考文献  (7)
节点文献
引证文献  (14)
同被引文献  (16)
二级引证文献  (10)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(9)
  • 参考文献(3)
  • 二级参考文献(6)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(2)
  • 引证文献(2)
  • 二级引证文献(0)
2015(3)
  • 引证文献(3)
  • 二级引证文献(0)
2016(3)
  • 引证文献(2)
  • 二级引证文献(1)
2017(3)
  • 引证文献(1)
  • 二级引证文献(2)
2018(7)
  • 引证文献(3)
  • 二级引证文献(4)
2019(4)
  • 引证文献(1)
  • 二级引证文献(3)
研究主题发展历程
节点文献
协同过滤
记忆效应
记忆元
兴趣偏好
个性化推荐
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程
月刊
1000-3428
31-1289/TP
大16开
上海市桂林路418号
4-310
1975
chi
出版文献量(篇)
31987
总下载数(次)
53
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导