作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
本文提出蚁群聚类算法的RBFNN模型,并用于电力系统中长期负荷预测.首先,模拟蚂蚁寻找“食物源”的行为,即根据蚂蚁在寻找食物过程中发现“食物源”(聚类中心),蚂蚁就会被“吸引”到食物源周围的特点,应用蚁群优化(ACO)算法,将历史数据聚类分析,得到各类聚类中心位置.其次,当聚类中心确定后,采用递推最小二乘法,训练RBF神经网络的隐含层至输出层之间的权重.最后,通过某电网实际数据,将本文模型与传统RBF模型预测结果进行比较,结果表明本文模型据具有更高的预测精度.
推荐文章
基于灰色模型的中长期电力负荷预测
灰色模型
电力负荷
中长期预测
分等时段序列
综合型中长期电力负荷预测系统的实现
中长期负荷预测
神经网络
灰色系统
电力系统
基于Adaboost的改进多元线性回归算法中长期负荷预测
中长期负荷预测
异方差性
Adaboost
多元线性回归
油田电力系统中长期负荷预测方法
油田电力系统
长期负荷
预测模型
测试
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 改进蚁群算法的中长期电力负荷预测
来源期刊 黑龙江科技信息 学科
关键词 中长期负荷预测 蚁群优化算法 聚类分析 RBF神经网络
年,卷(期) 2012,(35) 所属期刊栏目 信息产业
研究方向 页码范围 106,229
页数 2页 分类号
字数 4197字 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (2)
共引文献  (12)
参考文献  (2)
节点文献
引证文献  (2)
同被引文献  (8)
二级引证文献  (4)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(2)
  • 引证文献(1)
  • 二级引证文献(1)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
中长期负荷预测
蚁群优化算法
聚类分析
RBF神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
科学技术创新
旬刊
2096-4390
23-1600/N
16开
黑龙江省哈尔滨市
14-269
1997
chi
出版文献量(篇)
126927
总下载数(次)
266
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导