基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对高斯混合模型(Gaussian Mixture Model, GMM)参数最优估计问题,常用的最大期望(Expectation- Maximization, EM)算法对初值敏感,在实际训练中极易得到局部最优参数,本文提出了一种GMM参数优化的新方法。将EM算法融入到粒子群优化(Particle Swarm Optimization, PSO)训练过程,形成了一种新的混合算法,利用PSO的全局探索和EM算法的局部深度搜索的混合策略,粒子在每次迭代中执行PSO速度位置更新和标准EM算法的混合更新操作,在训练语音矢量空间搜索最优高斯混合模型参数。从而避免传统EM算法陷入局部最优的缺点。说话人辨认实验表明,与EM算法相比,本文方法可以得到更优的模型参数,能有效提高系统的识别率。
推荐文章
噪声环境中基于GMM汉语说话人识别
语音增强
Weiner滤波法
说话人识别
基于LSP线谱对参数的GMM说话人识别系统
高斯混合模型
线谱对
说话人识别
改进的说话人聚类初始化和GMM的多说话人识别
多说话人识别
改进的聚类初始化
高斯混合模型
平均类纯度
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 说话人识别中基于粒子群优化的GMM训练方法
来源期刊 软件工程与应用 学科 工学
关键词 说话人识别 高斯混合模型 粒子群优化
年,卷(期) 2013,(1) 所属期刊栏目
研究方向 页码范围 1-5
页数 5页 分类号 TP39
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王志强 深圳大学计算机与软件学院 44 332 11.0 16.0
2 周虹 深圳大学计算机与软件学院 7 30 4.0 5.0
3 薛丽萍 深圳大学计算机与软件学院 7 82 4.0 7.0
4 姚应龙 深圳大学计算机与软件学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (2)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
说话人识别
高斯混合模型
粒子群优化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件工程与应用
双月刊
2325-2286
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
291
总下载数(次)
1
总被引数(次)
0
论文1v1指导