基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
蛋白质一级序列的亚细胞定位在基因组注释、蛋白质功能预测、药物发现等领域起着重要作用。超级学习机是近年来新兴的机器学习方法。本文探讨了超级学习机在蛋白质亚细胞定位预测中的潜力。为此,我们首先给出了一种新的特征提取策略,将每个蛋白质一级序列表示成25维的数值向量。在此基础上,我们将852组分枝杆菌蛋白质数据分别用基于新特征的支持向量机方法、基于新特征的超级学习机方法和已有的基于伪氨基酸组成特征的支持向量机方法做数值试验。这852组数据从Swiss-Prot 48数据库中选取,分属于四个不同种类。通过在这些数据上做五折交叉数值比较发现,基于新特征提取策略的超级学习机方法的准确率最高,达到了97.2%,超过基于新特征的支持向量机方法的96.4%的准确率以及基于伪氨基酸组成特征的支持向量机方法的95.2%的准确率。
推荐文章
蛋白质亚细胞定位预测研究综述
蛋白质亚细胞定位预测
特征表示
算法设计
算法测试
Web服务器
蛋白质亚细胞定位预测的最近邻算法
生物信息学
蛋白质亚细胞定位
氨基酸组成
最近邻算法
基于在线序列-极限学习机的干旱预测
极限学习机
在线序列
干旱
预测因子
基于支持向量机集成的蛋白质与维生素绑定位点预测
蛋白质-维生素相互作用
绑定位点预测
多重随机下采样
SVM集成
Adaboost算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于一级序列预测蛋白质亚细胞定位的超级学习机方法
来源期刊 数据挖掘 学科 生物学
关键词 蛋白质亚细胞定位 超级学习机 同源蛋白质
年,卷(期) 2013,(1) 所属期刊栏目
研究方向 页码范围 6-11
页数 6页 分类号 Q5
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 石峰 华中农业大学理学院 8 18 2.0 4.0
2 陈洪 华中农业大学理学院 4 2 1.0 1.0
3 熊慧娟 华中农业大学理学院 4 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
蛋白质亚细胞定位
超级学习机
同源蛋白质
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数据挖掘
季刊
2163-145X
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
140
总下载数(次)
1
总被引数(次)
0
论文1v1指导