基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
作为数据挖掘的基础方法之一,数据聚类被广泛应用各个不同领域,例如计算机科学、医学、社会科学和经济学等。根据类的样本点的分布,数据聚类问题通常可以划分成线性可分聚类和非线性可分聚类。由于现实世界的数据分布流形的复杂性,非线性聚类是最流行和最被广泛研究的聚类问题之一。本文首先从四个角度对非线性聚类的近期工作做一个简要的综述,包括基于核的聚类算法、多中心点聚类算法、基于图的聚类算法以及基于支持向量的聚类算法。接着,我们将特别地介绍我们在非线性聚类研究方面的两个主要工作,分别是位置正则化的支持向量聚类(PSVC)以及多中心点近邻传播算法(MEAP)。我们将介绍这些方法的优势与局限性,同时指出未来的研究方向。
推荐文章
最优聚类个数和初始聚类中心点选取算法研究
K-means算法
聚类中心
准确率
误差平方和
基于模糊核聚类的多类支持向量机
支持向量机
多类分类
模糊核
二叉树
基于聚类算法和层次支持向量机的人脸识别方法
聚类算法
层次支持向量机
免疫算法
小波变换
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 支持向量和多中心点:非线性聚类的两大方法
来源期刊 数据挖掘 学科 工学
关键词 非线性聚类 核聚类 多中心点聚类 PSVC MEAP
年,卷(期) 2013,(4) 所属期刊栏目
研究方向 页码范围 41-49
页数 9页 分类号 TP3
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 赖剑煌 中山大学信息科学与技术学院 41 804 15.0 28.0
2 王昌栋 中山大学移动信息工程学院 11 40 3.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (2)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
非线性聚类
核聚类
多中心点聚类
PSVC
MEAP
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数据挖掘
季刊
2163-145X
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
140
总下载数(次)
1
论文1v1指导