基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In deriving a regression model analysts often have to use variable selection, despite of problems introduced by data- dependent model building. Resampling approaches are proposed to handle some of the critical issues. In order to assess and compare several strategies, we will conduct a simulation study with 15 predictors and a complex correlation structure in the linear regression model. Using sample sizes of 100 and 400 and estimates of the residual variance corresponding to R2 of 0.50 and 0.71, we consider 4 scenarios with varying amount of information. We also consider two examples with 24 and 13 predictors, respectively. We will discuss the value of cross-validation, shrinkage and backward elimination (BE) with varying significance level. We will assess whether 2-step approaches using global or parameterwise shrinkage (PWSF) can improve selected models and will compare results to models derived with the LASSO procedure. Beside of MSE we will use model sparsity and further criteria for model assessment. The amount of information in the data has an influence on the selected models and the comparison of the procedures. None of the approaches was best in all scenarios. The performance of backward elimination with a suitably chosen significance level was not worse compared to the LASSO and BE models selected were much sparser, an important advantage for interpretation and transportability. Compared to global shrinkage, PWSF had better performance. Provided that the amount of information is not too small, we conclude that BE followed by PWSF is a suitable approach when variable selection is a key part of data analysis.
推荐文章
基于Cross-Validation的小波自适应去噪方法
小波变换
Cross-Validation
自适应滤波
闽值
基于Cross-Validation的福建杉木人工林最优树高曲线模型筛选研究
树高胸径模型
最优模型
解析木
留一验证法
基于gBLUP方法及Cross-validation大豆表型精准预测研究
交叉验证
表型预测
gBLUP
遗传力
一种基于Cross-Validation的盲图像恢复方法
图像盲复原
点扩散函数
CV(交叉确定)
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Cross-Validation, Shrinkage and Variable Selection in Linear Regression Revisited
来源期刊 统计学期刊(英文) 学科 医学
关键词 Cross-Validation LASSO SHRINKAGE SIMULATION STUDY VARIABLE SELECTION
年,卷(期) 2013,(2) 所属期刊栏目
研究方向 页码范围 79-102
页数 24页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Cross-Validation
LASSO
SHRINKAGE
SIMULATION
STUDY
VARIABLE
SELECTION
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
统计学期刊(英文)
半月刊
2161-718X
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
584
总下载数(次)
0
总被引数(次)
0
论文1v1指导