作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
This paper proposes a probabilistic model of object category learning in conjunction with attention-guided organized perception. This model consists of a model of attention-guided organized perception of object segments on Markov random fields and a model of learning object categories based on a probabilistic latent component analysis. In attention guided organized perception, concurrent figure-ground segmentation is performed on dynamically-formed Markov random fields around salient preattentive points and co-occurring segments are grouped in the neighborhood of selective attended segments. In object category learning, a set of classes of each object category is obtained based on the probabilistic latent component analysis with the variable number of classes from bags of features of segments extracted from images which contain the categorical objects in context and an object category is represented by a composite of object classes. Through experiments using two image data sets, it is shown that the model learns a probabilistic structure of intra-categorical composition and inter-categorical difference of object categories and achieves high performance in object category recognition.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Rapid estimation of soil heavy metal nickel content based on optimized screening of near-infrared sp
Heavy metal
Band extraction
Partial least squares regression
Extreme learning machine
Near infrared spectroscopy
Data Transfer Object模式探讨
Data Transfer Object 三层应用 DataSet
用带时钟变量的线性时态逻辑扩充Object-Z
Object-Z
用带时钟变量的时态逻辑
实时系统
形式规格说明
形式验证
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Attention-Guided Organized Perception and Learning of Object Categories Based on Probabilistic Latent Variable Models
来源期刊 智能学习系统与应用(英文) 学科 医学
关键词 ATTENTION Perceptual Organization PROBABILISTIC LEARNING Object CATEGORIZATION
年,卷(期) 2013,(2) 所属期刊栏目
研究方向 页码范围 123-133
页数 11页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
ATTENTION
Perceptual
Organization
PROBABILISTIC
LEARNING
Object
CATEGORIZATION
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能学习系统与应用(英文)
季刊
2150-8402
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
166
总下载数(次)
0
总被引数(次)
0
论文1v1指导