基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出了一种基于PSO-RBF神经网络的电机轴承故障诊断方法.针对RBF神经网络泛化能力方面的不足,利用PSO算法对RBF神经网络的参数进行优化,然后采用优化后的PSO-RBF神经网络对轴承的故障形式进行诊断.结果表明, PSO-RBF神经网络的分类效果较好,在故障诊断领域有很好的应用价值.
推荐文章
基于PSO-RBF神经网络的模拟电路诊断
模拟电路
故障诊断
径向基神经网络
粒子群算法
小波包分解
基于改进的RBF神经网络的滚动轴承故障诊断
RBF神经网络
减聚类算法
故障诊断
滚动轴承
基于ESMD熵融合与PSO-SVM的电机轴承故障诊断
极点对称模态分解(ESMD)
熵融合
支持向量机(SVM)
故障诊断
基于RBF神经网络的齿轮箱故障诊断
BP神经网络
径向基函数神经网络
故障诊断
齿轮箱
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于PSO-RBF神经网络的电机轴承故障诊断
来源期刊 自动化与仪器仪表 学科 工学
关键词 PSO-RBF神经网络 电机轴承 故障诊断
年,卷(期) 2013,(2) 所属期刊栏目
研究方向 页码范围 143-144
页数 分类号 TH165+.3
字数 1298字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李宝栋 兰州工业学院机械工程系 28 99 6.0 9.0
2 马向军 2 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (17)
共引文献  (102)
参考文献  (7)
节点文献
引证文献  (3)
同被引文献  (25)
二级引证文献  (7)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(6)
  • 参考文献(3)
  • 二级参考文献(3)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(2)
  • 引证文献(0)
  • 二级引证文献(2)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(5)
  • 引证文献(0)
  • 二级引证文献(5)
研究主题发展历程
节点文献
PSO-RBF神经网络
电机轴承
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
自动化与仪器仪表
月刊
1001-9227
50-1066/TP
大16开
重庆市渝北区人和杨柳路2号B区
78-8
1981
chi
出版文献量(篇)
9657
总下载数(次)
37
总被引数(次)
30777
论文1v1指导