基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
贝叶斯Q学习方法使用概率分布来描述Q值的不确定性,并结合Q值分布来选择动作,以达到探索与利用的平衡。然而贝叶斯Q学习存在着收敛速度慢且收敛精度低的问题。针对上述问题,提出一种基于优先级扫描Dyna结构的贝叶斯Q学习方法-Dyna-PS-BayesQL。该方法主要分为2部分:在学习部分,对环境的状态迁移函数及奖赏函数建模,并使用贝叶斯Q学习更新动作值函数的参数;在规划部分,基于建立的模型,使用优先级扫描方法和动态规划方法对动作值函数进行规划更新,以提高对历史经验信息的利用,从而提升方法收敛速度及收敛精度。将Dyna-PS-BayesQL应用于链问题和迷宫导航问题,实验结果表明,该方法能较好地平衡探索与利用,且具有较优的收敛速度及收敛精度。
推荐文章
基于因果效应的贝叶斯网络结构学习方法
贝叶斯网络
阿尔茨海默病
K2算法
因果效应
BDe评分
互信息
基于MapReduce的贝叶斯网络参数学习方法
大数据
贝叶斯网络
参数学习
期望最大化算法
MapReduce
基于贝叶斯网络的海量数据多维分类学习方法研究
多维分类
贝叶斯网络
机器学习
海量数据
贝叶斯网络结构学习综述
贝叶斯网络
结构学习
数据
统计分析
搜索
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于优先级扫描Dyna结构的贝叶斯Q学习方法
来源期刊 通信学报 学科 工学
关键词 强化学习 马尔科夫决策过程 优先级扫描 Dyna结构 贝叶斯Q学习
年,卷(期) 2013,(11) 所属期刊栏目 学 术 论 文
研究方向 页码范围 129-139
页数 11页 分类号 TP181
字数 10370字 语种 中文
DOI 10.3969/j.issn.1000-436x.2013.11.015
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘全 苏州大学计算机科学与技术学院 99 1053 16.0 29.0
5 傅启明 苏州大学计算机科学与技术学院 23 360 10.0 18.0
6 于俊 苏州大学计算机科学与技术学院 3 58 3.0 3.0
7 孙洪坤 苏州大学计算机科学与技术学院 6 42 4.0 6.0
8 陈桂兴 苏州大学计算机科学与技术学院 2 12 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (15)
共引文献  (15)
参考文献  (4)
节点文献
引证文献  (10)
同被引文献  (25)
二级引证文献  (23)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(2)
  • 引证文献(2)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(4)
  • 引证文献(3)
  • 二级引证文献(1)
2017(6)
  • 引证文献(2)
  • 二级引证文献(4)
2018(6)
  • 引证文献(1)
  • 二级引证文献(5)
2019(11)
  • 引证文献(1)
  • 二级引证文献(10)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
强化学习
马尔科夫决策过程
优先级扫描
Dyna结构
贝叶斯Q学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
通信学报
月刊
1000-436X
11-2102/TN
大16开
北京市丰台区成寿路11号邮电出版大厦8层
2-676
1980
chi
出版文献量(篇)
6235
总下载数(次)
17
论文1v1指导