作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出一种改进随机子空间与C4.5决策树算法相结合的分类算法.以C4.5算法构建决策树作为集成学习的基分类器,每次迭代初始,将SMOTE采样技术与随机子空间方法相结合,生成在特征空间和数据分布上差异明显的合成样例,为基分类器提供多样化的平衡训练数据集,采用绝大多数投票方法进行最终决策的融合输出.实验结果表明,该方法对少数类和多数类均具有较高的识别率.
推荐文章
剪枝与欠采样相结合的不平衡数据分类方法
机器学习
不平衡数据集
剪枝技术
欠采样技术
交叉验证
合并分类器增强算法
MapReduce环境下处理多类别不平衡数据的改进随机森林算法
MapReduce
随机森林
分层采样
HDDT决策树
选择集成
不平衡数据集的分类方法研究
机器学习
不平衡数据
数据分类
一种面向不平衡分类的改进多决策树算法
不平衡数据
多决策树
Tomeklink欠采样
集成欠采样
属性选择
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 改进随机子空间与决策树相结合的不平衡数据分类方法
来源期刊 佛山科学技术学院学报(自然科学版) 学科 工学
关键词 不平衡数据分类 随机子空间方法 决策树 集成学习
年,卷(期) 2013,(5) 所属期刊栏目 信息科学
研究方向 页码范围 22-26
页数 5页 分类号 TP18
字数 4004字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 胡小生 佛山科学技术学院电子与信息工程学院 19 198 7.0 14.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (24)
共引文献  (92)
参考文献  (8)
节点文献
引证文献  (3)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(6)
  • 参考文献(0)
  • 二级参考文献(6)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(4)
  • 参考文献(2)
  • 二级参考文献(2)
2009(5)
  • 参考文献(2)
  • 二级参考文献(3)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
不平衡数据分类
随机子空间方法
决策树
集成学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
佛山科学技术学院学报(自然科学版)
双月刊
1008-0171
44-1438/N
大16开
广东省佛山市江湾一路18号
1988
chi
出版文献量(篇)
2495
总下载数(次)
2
总被引数(次)
7770
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导