基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
基于半监督学习思想,采用支持向量机算法来构建分类器,用大量未标识样本来改善分类器性能。标记后的未标识样本可能存在标记错误,采用信息熵加权的欧氏距离去噪方法,减少噪声样本对最优分类面构建的影响,并且对测试错误的数据进行人工反馈提高分类器精度。实验证明了该方法的有效性,去噪提高了分类器的准确率。
推荐文章
基于 SVM 和小波系数的图像去噪算法研究
图像去噪
小波系数
SVM
特征向量
一种多分类器协同的半监督分类算法SSC_MCC
半监督学习
多分类器协同
分类
双层结构
基于两阶段学习的半监督支持向量机分类算法
SVM (support vector machine)
半监督
两阶段学习
伪标识
基于目标分解的极化SAR图像SVM监督分类
极化合成孔径雷达
图像分类
目标分解
支持向量机
Wishart迭代
模糊C-均值
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于信息熵加权去噪的半监督SVM分类器
来源期刊 电脑知识与技术:学术交流 学科 工学
关键词 支持向量机 信息熵 半监督学习 去噪 欧氏距离
年,卷(期) 2013,(9) 所属期刊栏目
研究方向 页码范围 5705-5707
页数 3页 分类号 TP181
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (19)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2004(4)
  • 参考文献(4)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(5)
  • 参考文献(5)
  • 二级参考文献(0)
2009(4)
  • 参考文献(4)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
支持向量机
信息熵
半监督学习
去噪
欧氏距离
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑知识与技术:学术版
旬刊
1009-3044
34-1205/TP
安徽合肥市濉溪路333号
26-188
出版文献量(篇)
41621
总下载数(次)
23
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导