基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
文本特征提取和分类器优化是文本分类的两个关键问题,为了提高文本分类正确率,提出一种聚类加权(CW)和布谷鸟(CS)算法优化最小二乘支持向量机(LSSVM)的文本分类模型。采用TF-IDF算法计算特征词的权重,根据特征词的位置进行加权,经过特征聚类处理降低特征冗余度,采用LSSVM建立文本分类器,采用CS算法对LSSVM参数进行优化。采用复旦大学语料库对模型性能进行仿真测试,仿真结果表明,模型不仅提高了文本分类的正确率,而且提高了文本分类的效率。
推荐文章
基于模糊聚类的文本分类器
文本分类
模糊聚类
编网法
模糊相似度
融合LSI和支持向量聚类的网页文本分类算法
特征提取
潜在语义索引
网页文本
语义聚类
支持向量聚类
基于聚类改进的 KN N文本分类算法
文本分类
KNN
聚类化
训练集
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 聚类加权和CS-LSSVM的文本分类
来源期刊 计算机工程与应用 学科 工学
关键词 文本特征 聚类加权 最小二乘支持向量机 布谷鸟搜索算法
年,卷(期) 2013,(16) 所属期刊栏目
研究方向 页码范围 124-128
页数 5页 分类号 TP181
字数 4683字 语种 中文
DOI 10.3778/j.issn.1002-8331.1303-0315
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李云翔 湖南城市学院数学与计算科学学院 22 28 3.0 4.0
2 赵专政 湖南城市学院数学与计算科学学院 16 36 4.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (53)
共引文献  (95)
参考文献  (10)
节点文献
引证文献  (5)
同被引文献  (21)
二级引证文献  (32)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(7)
  • 参考文献(0)
  • 二级参考文献(7)
2000(5)
  • 参考文献(0)
  • 二级参考文献(5)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(7)
  • 参考文献(0)
  • 二级参考文献(7)
2003(7)
  • 参考文献(0)
  • 二级参考文献(7)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(4)
  • 参考文献(1)
  • 二级参考文献(3)
2007(4)
  • 参考文献(1)
  • 二级参考文献(3)
2008(4)
  • 参考文献(1)
  • 二级参考文献(3)
2009(8)
  • 参考文献(3)
  • 二级参考文献(5)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(3)
  • 引证文献(1)
  • 二级引证文献(2)
2018(11)
  • 引证文献(1)
  • 二级引证文献(10)
2019(16)
  • 引证文献(1)
  • 二级引证文献(15)
2020(5)
  • 引证文献(0)
  • 二级引证文献(5)
研究主题发展历程
节点文献
文本特征
聚类加权
最小二乘支持向量机
布谷鸟搜索算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导