在绿潮遥感业务化监测中,250 m 分辨率的 MODIS 卫星数据是主要数据源,归一化差值植被指数(ND-VI)是绿潮卫星遥感信息提取的主要方法。研究发现,由于 MODIS 空间分辨率较低,存在大量的混合像元,导致提取的绿潮覆盖面积明显偏大。针对该问题,本文在 MODIS 绿潮 NDVI 计算的基础上,首先对大于 NDVI 阈值的像元进行混合像元分解,得到 MODIS NDVI 混合像元分解后的绿潮面积,然后以准同步的30 m 分辨率 HJ-1 CCD 影像提取的绿潮覆盖面积为真值,建立了 MODIS NDVI 混合像元分解得到的绿潮面积与 HJ-1提取的绿潮面积之间的关系模型,以实现绿潮面积的精细化提取。与传统的 NDVI 阈值法和混合像元分解法相比,该方法提取的绿潮覆盖面积更接近于“真值”,面积约为“真值”的96%,而传统的 NDVI 阈值法和混合像元分解方法提取的面积分别为“真值”的2.96倍和45%。另外,与传统的 NDVI 阈值法相比,新方法对 NDVI 阈值变化不敏感,在相同的 NDVI 阈值变化区间内,前者提取的绿潮覆盖面积变化了41%,而新方法的变化仅为11%。本文的工作在很大程度上解决了 MODIS 空间分辨率低导致的绿潮监测结果不准确的问题,为精细化的绿潮卫星遥感业务监测提供了参考。