原文服务方: 计算技术与自动化       
摘要:
鉴于 Gamma分布的 SAR图像相干斑经对数变换后可近似为高斯分布,提出一种基于粒子群优化的BP神经网络复原去噪算法。首先用高斯噪声对无噪图像进行模糊处理,然后将结果和原图像组成训练对,用于训练优化后的神经网络,最后利用训练好的神经网络对 SAR 图像进行复原,从而达到去除相干斑的目的。实验表明,该算法能有效解决传统去噪算法在图像失真、边缘模糊方面的问题,收敛速度快,迭代次数少,归一化均方误差(NMSE)和峰值噪比(PSNR)效果更好。
推荐文章
一种改进的SAR图像去噪方法
SAR图像
相干斑噪声
Lee滤波
比值边缘检测
一种可操纵金字塔的相干斑去噪方法
相干斑去噪
可操纵金字塔
几何先验模型
邻域空间指示器
贝叶斯估计
SAR图像去斑方法研究
SAR图像
斑点噪声
相干性
基于聚类算法的SAR图像去噪
合成孔径雷达
模糊C均值聚类
小波变换
图像去噪
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种对Gamma分布的SAR图像相干斑去噪方法
来源期刊 计算技术与自动化 学科
关键词 BP神经网络 粒子群优化 合成孔径雷达图像 去噪
年,卷(期) 2014,(3) 所属期刊栏目 图形图像技术
研究方向 页码范围 92-96
页数 5页 分类号 TP751
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (36)
共引文献  (86)
参考文献  (6)
节点文献
引证文献  (7)
同被引文献  (6)
二级引证文献  (1)
1976(2)
  • 参考文献(1)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(2)
  • 参考文献(2)
  • 二级参考文献(0)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(5)
  • 参考文献(2)
  • 二级参考文献(3)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(2)
  • 引证文献(2)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(4)
  • 引证文献(4)
  • 二级引证文献(0)
研究主题发展历程
节点文献
BP神经网络
粒子群优化
合成孔径雷达图像
去噪
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算技术与自动化
季刊
1003-6199
43-1138/TP
16开
1982-01-01
chi
出版文献量(篇)
2979
总下载数(次)
0
总被引数(次)
14675
论文1v1指导