基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出了一种基于核独立成分分析(KICA)的发酵过程在线监测方法,该方法结合了发酵过程数据的特点,采用了一种新的过程监测指标Us2,对发酵过程数据各时刻独立分量与该时刻所有批次独立分量均值的偏差信息进行特征提取,具有较强的抗干扰能力.青霉素发酵检测的实验结果表明,采用新监测指标的发酵过程监测方法能更好的识别较小的故障,降低漏报率,提高发酵过程在线监测的准确性.
推荐文章
核独立成分分析在图像处理中的应用
核独立成分分析
图像处理
遥感影像
基于核独立成分分析的盲多用户检测算法
多用户检测
核独立成分分析
盲信号分离
重建核希尔伯特空间
独立成分相关分析的自适应故障监测方法
独立成分分析
粒子群算法
隐马尔科夫模型
相关性评估
自适应因子
故障检测
基于独立成分分析和支持向量机的入侵检测方法
入侵检测
独立成分分析
支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于核独立成分分析的发酵过程在线监测方法
来源期刊 北京化工大学学报(自然科学版) 学科 工学
关键词 发酵过程监测 核独立成分分析 监测指标 青霉素模型
年,卷(期) 2014,(2) 所属期刊栏目 生物技术与环境工程
研究方向 页码范围 81-86
页数 6页 分类号 TP391
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王建林 107 1185 19.0 31.0
2 赵利强 53 331 11.0 17.0
3 于涛 51 366 11.0 18.0
4 祝元春 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (49)
共引文献  (21)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(7)
  • 参考文献(0)
  • 二级参考文献(7)
1996(5)
  • 参考文献(0)
  • 二级参考文献(5)
1998(5)
  • 参考文献(0)
  • 二级参考文献(5)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(6)
  • 参考文献(1)
  • 二级参考文献(5)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(7)
  • 参考文献(1)
  • 二级参考文献(6)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(5)
  • 参考文献(2)
  • 二级参考文献(3)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
发酵过程监测
核独立成分分析
监测指标
青霉素模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
北京化工大学学报(自然科学版)
双月刊
1671-4628
11-4755/TQ
16开
北京市北三环东路15号
82-657
1972
chi
出版文献量(篇)
3271
总下载数(次)
7
总被引数(次)
27609
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导