基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
基于RBF核的LS-SVR模型,采用实验变差函数计算插值算法权值,对权系数与各训练样本内积值相乘所反映样本空间结构和相互间关联度的插值核函数进行构造,提出了一种通过Kriging空间散乱插值方法利用样本数据构造出的插值核函数与RBF核函数进行组合而成的核方法。结果表明,该方法使LS-SVR板形预测有更好的性能,在提升预测算法泛化能力的同时,实现了对板形的精准回归预测。
推荐文章
基于LS-SVR的图像矫正
颜色空间
最小二乘支持向量回归(LS-SVR)
图像矫正
色差
基于RS与LS-SVR的储层参数预测
粗糙集
最小二乘支持向量机
孔隙度
基于LS-SVR的回归曲线建模
支持向量机
支持向量回归
最小二乘
回归曲线
一种基于混合核函数PSO_SVR的网络安全态势预测方法
态势预测
网络安全
混合核函数
粒子群算法
支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于插值组合核的LS-SVR板形预测方法
来源期刊 武汉科技大学学报(自然科学版) 学科 工学
关键词 散乱点插值 支持向量机算法 RBF核函数 组合核函数 板形预测
年,卷(期) 2014,(4) 所属期刊栏目
研究方向 页码范围 263-269
页数 7页 分类号 TG333|TP181
字数 6554字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王京 北京科技大学冶金工程研究院 131 1007 18.0 23.0
2 姚钰鹏 北京科技大学冶金工程研究院 2 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (37)
共引文献  (127)
参考文献  (11)
节点文献
引证文献  (1)
同被引文献  (3)
二级引证文献  (3)
1909(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(4)
  • 参考文献(1)
  • 二级参考文献(3)
2000(4)
  • 参考文献(1)
  • 二级参考文献(3)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(8)
  • 参考文献(1)
  • 二级参考文献(7)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(4)
  • 参考文献(2)
  • 二级参考文献(2)
2006(7)
  • 参考文献(3)
  • 二级参考文献(4)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
散乱点插值
支持向量机算法
RBF核函数
组合核函数
板形预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
武汉科技大学学报(自然科学版)
双月刊
1674-3644
42-1608/N
湖北武汉青山区
chi
出版文献量(篇)
2627
总下载数(次)
1
总被引数(次)
16881
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导