基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
人工蜂群算法作为一种新生代的优化算法,近年来在众多科学领域中表现出一定的优势,但是其收敛速度并不高效,并且容易过早地陷入局部最优。首先通过对适应度选择进行改进,提高算法的收敛速度,同时结合模拟退火算法,一定程度上避免过早陷入局部最优。最后用一组基准函数进行实验,证明改进后的人工蜂群算法有更好的优化性能。
推荐文章
一种改进的人工蜂群算法研究
人工蜂群算法
算法改进
数据分析
更新维度
领域搜索
仿真实验
一种人工蜂群算法改进方案
人工蜂群算法
跟随蜂
侦察蜂
邻域搜索
一种求解旅行商问题的改进人工蜂群算法
旅行商问题
人工蜂群算法
柯西变异算子
改进的人工蜂群算法
人工蜂群算法
差分进化算法
种群初始化
搜索方程
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 人工蜂群算法的一种改进
来源期刊 现代计算机:中旬刊 学科 数学
关键词 人工蜂群算法 适应度 模拟退火算法 函数优化
年,卷(期) 2014,(6) 所属期刊栏目
研究方向 页码范围 25-29
页数 5页 分类号 O224
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陆能枝 上海海事大学信息工程学院 17 21 3.0 3.0
2 魏帅 上海海事大学信息工程学院 2 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (27)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2008(4)
  • 参考文献(4)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(5)
  • 参考文献(5)
  • 二级参考文献(0)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
人工蜂群算法
适应度
模拟退火算法
函数优化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代计算机:中旬刊
月刊
1007-1423
44-1415/TP
广州市海珠区新港西路135号中山大学园B
46-205
出版文献量(篇)
9067
总下载数(次)
3
论文1v1指导