基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对航天器精确预测与健康管理的需求,将粒子群算法、模糊数学与支持向量机的优势相结合,提出了一种粒子群模糊支持向量机预测方法.针对某卫星南帆板输出电流参量的预测实例,设计了总平均绝对误差、总平均绝对百分比误差、总均方根误差三个预测结果评价指标,对不同步长情况下的预测结果进行了比较,证明了粒子群优化模糊支持向量机预测方法的有效性.通过对比粒子群优化模糊支持向量机模型、灰色粒子群神经网络优化模型、粒子群神经网络模型、灰色模型预测的总平均绝对百分比误差,结果证明粒子群优化模糊支持向量机的预测精度和效率较高,在航天器参量预测领域具有较好的应用前景.
推荐文章
粒子群算法优化支持向量机的网络流量混沌预测
粒子群算法优化
支持向量机
网络流量
混沌预测
平均绝对误差
蚁群算法
一种新的模糊支持向量机算法
隶属度
支持向量机
模糊K近邻
模糊支持向量机
基于粒子群优化支持向量机的建筑室内温度预测模型
室内温度
楼宇阀门
支持向量机
粒子群优化算法
一种改进的模糊多类支持向量机算法
支持向量机
统计学习理论
多类分类
模糊隶属函数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种粒子群模糊支持向量机的航天器参量预测方法
来源期刊 宇航学报 学科 工学
关键词 参数预测 粒子群优化 模糊数学 支持向量机
年,卷(期) 2014,(11) 所属期刊栏目 制导、导航与控制
研究方向 页码范围 1270-1276
页数 7页 分类号 TP202
字数 5995字 语种 中文
DOI 10.3873/j.issn.1000-1328.2014.11.007
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 皮德常 南京航空航天大学计算机科学与技术学院 66 408 9.0 17.0
2 魏蛟龙 华中科技大学电子信息与工程系 75 546 13.0 18.0
3 顾胜 4 11 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (25)
共引文献  (16)
参考文献  (12)
节点文献
引证文献  (8)
同被引文献  (27)
二级引证文献  (14)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(6)
  • 参考文献(1)
  • 二级参考文献(5)
2009(5)
  • 参考文献(2)
  • 二级参考文献(3)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(3)
  • 引证文献(3)
  • 二级引证文献(0)
2018(3)
  • 引证文献(0)
  • 二级引证文献(3)
2019(13)
  • 引证文献(3)
  • 二级引证文献(10)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
参数预测
粒子群优化
模糊数学
支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
宇航学报
月刊
1000-1328
11-2053/V
16开
北京838信箱
2-167
1980
chi
出版文献量(篇)
5133
总下载数(次)
7
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导