基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
风电功率短期预测对电力系统的调度运行有着重要意义.为提高风电功率短期预测的精度,构建基于改进的经验模态分解法(EMD)和支持向量机(SVM)相结合的预测模型,进行风电功率的短期预测.首先,采用镜像延拓算法对预处理后的功率序列进行处理,从而抑制经验模态分解法分解过程中的端点效应;同时,采用分段三次埃尔米特插值代替三次样条插值,由此得到的包络线可以有效改进EMD的欠冲或过冲问题;然后用改进后的EMD方法将风电功率序列分解成不同的分量,再针对各分量分别构建各自的SVM模型进行预测,最后将各预测分量进行叠加,由此得到总的风电功率预测值.实验结果表明,相比与其他的短期功率预测模型,改进的EMD-SVM预测模型具有更高的预测精度,具有一定的应用价值.
推荐文章
基于CS-SVR模型的短期风电功率预测
功率预测
布谷鸟搜索算法
支持向量回归机
参数寻优
异常数据剔除
基于EMD与SVM的风电功率短期预测
风电功率
预测
支持向量机
经验模式分解法
风电发电功率预测模型改进研究
风电发电
功率预测
优化控制
PID
基于风速融合和NARX神经网络的短期风电功率预测
短期风电功率预测
预测模型
NARX神经网络
风速融合
数据融合
数据处理
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进EMD与SVM的风电功率短期预测模型
来源期刊 控制工程 学科 工学
关键词 风电功率 预测 经验模态分解法 支持向量机 模型
年,卷(期) 2014,(6) 所属期刊栏目 过程控制技术及应用
研究方向 页码范围 833-837
页数 5页 分类号 TP27
字数 5979字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 俞金寿 华东理工大学信息科学与工程学院 199 3638 32.0 51.0
2 陈国初 上海电机学院电气学院 78 405 11.0 17.0
3 徐余法 上海电机学院电气学院 56 279 9.0 15.0
4 管志威 上海电机学院电气学院 1 15 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (86)
共引文献  (487)
参考文献  (11)
节点文献
引证文献  (15)
同被引文献  (66)
二级引证文献  (12)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(2)
  • 参考文献(0)
  • 二级参考文献(2)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(1)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2003(7)
  • 参考文献(0)
  • 二级参考文献(7)
2004(8)
  • 参考文献(1)
  • 二级参考文献(7)
2005(12)
  • 参考文献(0)
  • 二级参考文献(12)
2006(9)
  • 参考文献(0)
  • 二级参考文献(9)
2007(9)
  • 参考文献(2)
  • 二级参考文献(7)
2008(10)
  • 参考文献(1)
  • 二级参考文献(9)
2009(5)
  • 参考文献(1)
  • 二级参考文献(4)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(8)
  • 参考文献(2)
  • 二级参考文献(6)
2012(7)
  • 参考文献(1)
  • 二级参考文献(6)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(2)
  • 引证文献(2)
  • 二级引证文献(0)
2017(3)
  • 引证文献(3)
  • 二级引证文献(0)
2018(5)
  • 引证文献(4)
  • 二级引证文献(1)
2019(8)
  • 引证文献(4)
  • 二级引证文献(4)
2020(9)
  • 引证文献(2)
  • 二级引证文献(7)
研究主题发展历程
节点文献
风电功率
预测
经验模态分解法
支持向量机
模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
控制工程
月刊
1671-7848
21-1476/TP
大16开
沈阳东北大学310信箱
8-216
1994
chi
出版文献量(篇)
5468
总下载数(次)
9
论文1v1指导