基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统的支持向量机(SVM)是一种有监督的机器学习方法,需要大量的有标签样本,而实际中对于有标签的样本数量十分有限且获得困难;直推式学习正是依据已知样本对特定的未知样本进行识别的方法与准则;研究了近年来直推式支持向量机学习算法及其改进算法,讨论了直推式学习算法的优缺点并对其发展进行了展望.
推荐文章
基于Tri-training直推式支持向量机算法
支持向量机
直推式学习
半监督学习
Tri-training算法
代价敏感的直推式支持向量机算法
直推式支持向量机
代价敏感
不均衡数据集
近邻渐进直推式支持向量机算法
渐进直推式支持向量机
无标签样本
近邻
基于k均值聚类的直推式支持向量机学习算法
直推式学习
支持向量机
k均值聚类
无标签样本
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 直推式支持向量机的研究学习
来源期刊 重庆工商大学学报(自然科学版) 学科 工学
关键词 支持向量机 直推式支持向量机 半监督学习 最小二乘 模糊学习
年,卷(期) 2014,(5) 所属期刊栏目
研究方向 页码范围 58-64
页数 7页 分类号 TP181
字数 5917字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘琼荪 重庆大学数学与统计学院 66 621 14.0 21.0
2 王利文 重庆大学数学与统计学院 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (27)
共引文献  (94)
参考文献  (10)
节点文献
引证文献  (1)
同被引文献  (8)
二级引证文献  (1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(6)
  • 参考文献(1)
  • 二级参考文献(5)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(5)
  • 参考文献(1)
  • 二级参考文献(4)
2010(8)
  • 参考文献(1)
  • 二级参考文献(7)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
支持向量机
直推式支持向量机
半监督学习
最小二乘
模糊学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
重庆工商大学学报(自然科学版)
双月刊
1672-058X
50-1155/N
16开
重庆市南岸区学府大道21号
1983
chi
出版文献量(篇)
3397
总下载数(次)
6
总被引数(次)
14776
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导