基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
数据挖掘是适应信息社会从海量的数据库中提取信息的需要而产生的新学科。它是统计学、机器学习、数据库、模式识别、人工智能等学科的交叉。以往的数据挖掘技术的应用大多是在金融领域,而在其他领域里面应用不是很多,如在高校招生中的应用更是如此。数据挖掘技术对招生工作的深层研究与挖掘将会得到各高校的更多重视。以某高校招生数据作为招生信息为依据,对高校招生的关联规则进行分析。从而对关联性规则的应用作进一步的研究。
推荐文章
基于Apriori算法的船舶交通事故关联规则分析
船舶交通事故
数据挖掘
Apriori算法
关联规则
海上交通安全
面向Web关联规则挖掘的快速Apriori算法
Web关联规则
Apriori
Web行为挖掘
关联规则挖掘 Apriori 算法的研究与改进
数据挖掘
关联规则
Apriori
辅助表
交集策略
频繁项集
关联规则挖掘Apriori算法的研究与改进
关联规则
频繁项目集
支持度
事务向量
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Apriori算法的高校招生的关联规则分析
来源期刊 微型机与应用 学科 工学
关键词 关联规则 Apriori 算法 置信度 支持度 建模
年,卷(期) 2014,(5) 所属期刊栏目 应用奇葩
研究方向 页码范围 87-89
页数 3页 分类号 TP311.12
字数 1332字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 潘明波 6 14 3.0 3.0
2 赵祖应 10 30 3.0 5.0
3 丁勇 4 27 2.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (10)
共引文献  (16)
参考文献  (5)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(4)
  • 参考文献(2)
  • 二级参考文献(2)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
关联规则
Apriori 算法
置信度
支持度
建模
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息技术与网络安全
月刊
2096-5133
10-1543/TP
大16开
北京市海淀区清华东路25号(北京927信箱)
82-417
1982
chi
出版文献量(篇)
10909
总下载数(次)
33
总被引数(次)
35987
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导