基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
实时成像跟踪系统要求对运动目标能够有较快的响应速度,跟踪的响应时间越短,系统的实时性就越好,从而可靠的跟踪系统显得尤为重要.文中在研究了目前常用几种跟踪算法的基础上,提出一种基于目标特征匹配和Kalman预测相结合的跟踪方法,选取目标的灰度直方图信息做为特征匹配模板,使用Kalman滤波器对目标在下一帧图像中可能出现的位置进行预测,在预测范围内进行搜索及模板匹配,实验结果表明,该跟踪算法能够对目标实现稳定可靠的跟踪.
推荐文章
实时跟踪放疗中关联模型和预测算法
放疗
实时跟踪
关联模型
预测算法
柔性支撑三维机动目标的解耦跟踪预测算法
射电望远镜
并联机器人
三维机动目标
跟踪预测
UAV目标跟踪预测算法研究
无人机
目标跟踪
均值偏移
辅助变量粒子滤波
Kalman滤波
目标飞行轨迹预测算法研究
预测
滤波
飞行轨迹
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 目标实时跟踪与预测算法研究
来源期刊 信息技术 学科 工学
关键词 实时跟踪 目标预测 Kalman预测
年,卷(期) 2014,(3) 所属期刊栏目 基金项目
研究方向 页码范围 55-57
页数 3页 分类号 TP391.41
字数 2967字 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (33)
共引文献  (167)
参考文献  (5)
节点文献
引证文献  (3)
同被引文献  (10)
二级引证文献  (15)
1972(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(4)
  • 参考文献(1)
  • 二级参考文献(3)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(5)
  • 参考文献(1)
  • 二级参考文献(4)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(5)
  • 引证文献(1)
  • 二级引证文献(4)
2017(3)
  • 引证文献(0)
  • 二级引证文献(3)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(5)
  • 引证文献(0)
  • 二级引证文献(5)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
实时跟踪
目标预测
Kalman预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息技术
月刊
1009-2552
23-1557/TN
大16开
哈尔滨市南岗区黄河路122号
14-36
1977
chi
出版文献量(篇)
11355
总下载数(次)
31
论文1v1指导