基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
采煤机截割部摇臂齿轮箱承担着综采工作面截割部动力传动的重任,其故障与否直接影响采煤机正常工作.而传统的故障诊断方法-BP神经网络采用基于梯度下降的算法,存在容易陷入局部极小值、收敛速度慢等不足,这些不足严重影响了BP网络的应用.然而粒子群算法(PSO)有很好的全局收敛特性.因此,为了提高网络的性能,采用粒子群算法来优化BP神经网络,将改进的PSO引入神经网络的拓扑结构,用PSO的迭代代替BP中的梯度修正.结果表明:提出的改进方案可以有效地优化神经网络,提高其在采煤机齿轮箱故障诊断中的应用价值.
推荐文章
基于多重分形和PSO-SVM的齿轮箱故障诊断
齿轮箱
分形理论
多重分形
PSO-SVM
故障诊断
基于改进LMD算法的齿轮箱故障诊断研究
齿轮箱
故障诊断
有理样条插值
改进局部均值分解
基于MED-SVM的齿轮箱故障诊断方法
最小熵反褶积
支持向量机
特征提取
交叉验证
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进粒子群的采煤机齿轮箱故障诊断
来源期刊 煤矿机械 学科 工学
关键词 采煤机齿轮箱 粒子群优化 改进的PSO 局部极小值
年,卷(期) 2014,(4) 所属期刊栏目 故障·诊断
研究方向 页码范围 244-246
页数 3页 分类号 TD421
字数 2253字 语种 中文
DOI 10.13436/j.mkjx.201404108
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 潘宏侠 中北大学信息与通信工程学院 359 2630 23.0 34.0
5 曲景阳 中北大学信息与通信工程学院 8 23 3.0 4.0
6 方质彬 中北大学机械工程与自动化学院 7 16 2.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (3)
共引文献  (6)
参考文献  (2)
节点文献
引证文献  (5)
同被引文献  (7)
二级引证文献  (12)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2014(2)
  • 引证文献(2)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(2)
  • 引证文献(0)
  • 二级引证文献(2)
2017(4)
  • 引证文献(1)
  • 二级引证文献(3)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(5)
  • 引证文献(0)
  • 二级引证文献(5)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
采煤机齿轮箱
粒子群优化
改进的PSO
局部极小值
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
煤矿机械
月刊
1003-0794
23-1280/TD
大16开
哈尔滨市古香街30号
14-38
1980
chi
出版文献量(篇)
21080
总下载数(次)
49
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导