作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对高维数据分类问题的特点,提出一种基于改进型局部线性嵌入LLE( Locally Linear Embedding)算法的数据降维算法,结合支持向量机SVM( Support Vector Machine)算法实现数据分类。首先,通过LLE算法降维后的数据集,按照数据集内的离差最小化,数据集间的离差最大化的原则,计算得到最优化邻近点个数;其次,将最优邻近点个数所得的降维数据作为最优结果,按一定比例选取训练集,输入SVM算法建立数据分类器;最后,将测试集输入训练完成的分类器中,实现最优化数据分类。选取Iris flower,Yale等多类数据集与传统算法进行对比实验,验证算法的可行性。实验结果表明:所提出的算法可以有效地完成数据分类,针对低维数据和高维数据分类问题具有较好的适用性和优越性,在人脸检测中也取得较好的结果。
推荐文章
基于流形学习的社会化媒体网络数据分类
流形学习
拉普拉斯特征映射
社会化媒体
网络数据分类
多标签
基于核融合的多信息流形学习算法
核融合
流形学习
多信息
流形学习中的算法研究
流形学习
主流形
局部线性嵌套
等度规映射
变分法
互信息
基于点密集度的非线性流形学习算法
流形学习
组合投资
局部线性嵌入
密集度
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进流形学习的数据分类算法
来源期刊 计算机应用与软件 学科 工学
关键词 数据分类 局部线性嵌入 最优邻近点个数 降维 最大化
年,卷(期) 2014,(12) 所属期刊栏目 数据工程
研究方向 页码范围 60-63
页数 4页 分类号 TP391.41
字数 3371字 语种 中文
DOI 10.3969/j.issn.1000-386x.2014.12.014
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 关健生 厦门理工学院电子与电气工程系 7 31 3.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (19)
共引文献  (48)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(6)
  • 参考文献(1)
  • 二级参考文献(5)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(4)
  • 参考文献(4)
  • 二级参考文献(0)
2013(3)
  • 参考文献(3)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
数据分类
局部线性嵌入
最优邻近点个数
降维
最大化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用与软件
月刊
1000-386X
31-1260/TP
大16开
上海市愚园路546号
4-379
1984
chi
出版文献量(篇)
16532
总下载数(次)
47
总被引数(次)
101489
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导