作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出了一个基于均值近邻的样本选择算法,并且对CMU-PIE人脸数据库数据进行了样本选择,提取关键数据,结合神经网络算法进行了分类实验.实验结果证明,与传统方法相比,该方法在保持了一定的准确率的前提下,能够有效地减少样本集中的冗余信息,同时在时间复杂度方面也有了一定的提升.
推荐文章
基于聚类选择k近邻的LLE算法及故障检测
局部线性嵌入
最近邻数
子流形
故障检测
聚类指标
基于局部均值分解和K近邻算法的滚动轴承故障诊断方法
滚动轴承
局部均值分解
K近邻算法
特征提取
故障诊断
基于熵优化近邻选择的协同过滤推荐算法
协同过滤
近邻选择
相似性
巴氏系数
推荐权重
基于样本空间分布密度的初始聚类中心优化K-均值算法
关键词
聚类
K-均值聚类
初始中心
邻域
样本分布密度
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于均值近邻的样本选择算法
来源期刊 微型机与应用 学科 工学
关键词 样本选择 神经网络 均值近邻 人脸识别
年,卷(期) 2014,(17) 所属期刊栏目 技术与方法
研究方向 页码范围 80-82
页数 3页 分类号 TP391.4
字数 3371字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨立 运城学院公共计算机教学部 21 70 4.0 7.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (9)
共引文献  (19)
参考文献  (7)
节点文献
引证文献  (1)
同被引文献  (5)
二级引证文献  (0)
1992(2)
  • 参考文献(1)
  • 二级参考文献(1)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
样本选择
神经网络
均值近邻
人脸识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息技术与网络安全
月刊
2096-5133
10-1543/TP
大16开
北京市海淀区清华东路25号(北京927信箱)
82-417
1982
chi
出版文献量(篇)
10909
总下载数(次)
33
总被引数(次)
35987
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导