基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在实际信号分解中,经验模态分解( EMD)是对噪声敏感的,往往会分离出一些虚假的本征模函数,对信号的分析产生一定影响。为了提高EMD分解的正确率,减少其出现虚假本征模函数的情况,文中提出了一种基于支持向量回归( SVR)的去噪方法。先对一次EMD分解结果进行SVR逐层滤波并且对信号进行重组,然后利用EMD方法对重组信号进行二次分解。实验表明,二次分解结果已经非常接近于理想的分解结果,不会出现虚假IMF。这种分解方法对噪声不敏感,能有效提高EMD方法对噪声的容忍度。
推荐文章
一种基于支持向量回归机的经验模态分解方法
经验模态分解
支持向量回归机
模态混叠
局部均值曲线
Hilbert-Huang变换
阵列波束优化的标准支持向量回归
支持向量机
标准支持向量回归
波束形成
阵列信号处理
阵列波束优化
基于数据域描述的模糊支持向量回归
支持向量机
数据域描述
模糊隶属度
建模
基于标准支持向量回归的阵列波束优化研究
支持向量机
标准支持向量回归
波束形成
阵列信号处理
优化
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 采用支持向量回归抑制噪声的经验模态分解方法
来源期刊 计算机技术与发展 学科 工学
关键词 信号处理 经验模态分解 支持向量回归 噪声抑制
年,卷(期) 2014,(11) 所属期刊栏目 智能、算法、系统工程
研究方向 页码范围 122-126
页数 5页 分类号 TN911.7
字数 3915字 语种 中文
DOI 10.3969/j.issn.1673-629X.2014.11.031
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 邱晓晖 南京邮电大学通信与信息工程学院 49 363 10.0 17.0
2 宋剑 南京邮电大学通信与信息工程学院 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (33)
共引文献  (35)
参考文献  (10)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(3)
  • 参考文献(2)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(3)
  • 参考文献(2)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(7)
  • 参考文献(0)
  • 二级参考文献(7)
2010(5)
  • 参考文献(2)
  • 二级参考文献(3)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
信号处理
经验模态分解
支持向量回归
噪声抑制
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
相关基金
江苏省自然科学基金
英文译名:Natural Science Foundation of Jiangsu Province
官方网址:http://www.jsnsf.gov.cn/News.aspx?a=37
项目类型:
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导