原文服务方: 西安交通大学学报       
摘要:
针对杂波环境下多扩展目标的运动状态和形状信息的联合估计跟踪的问题,提出了一种基于随机矩阵的扩展目标跟踪算法.该算法采用具有噪声基于密度的空间聚类(DBSCAN)划分与预测划分相结合的联合划分算法对量测集进行划分,然后采用联合概率数据关联(JPDA)的软关联思想建立量测簇与扩展目标之间的对应关系,最后采用随机矩阵法对扩展目标进行估计获得运动状态和形状信息,特点是:将量测集划分为互不相交的几个簇,以使每个簇中的量测源于同一目标或杂波;建立量测簇与扩展目标之间的关联关系及状态更新.联合划分算法与DBSCAN划分的比较仿真实验表明,在有距离相近目标时采用联合划分算法比采用DBSCAN划分的滤波器的跟踪效果好得多.所提多扩展目标滤波器与ET-GMPDH滤波器的仿真实验表明,所提算法有较高的跟踪精度、较大的检测概率及较小的虚警概率.
推荐文章
高斯混合扩展目标多伯努利滤波器
扩展目标跟踪
随机有限集
数据关联
高斯混合
多扩展目标的高斯混合概率假设密度滤波器
扩展目标跟踪
高斯混合概率假设密度
随机超曲面模型
形状估计
用于机动目标跟踪的多模型概率假设密度滤波器
机动目标跟踪
概率假设密度
多模型
估计
δ-广义标记多伯努利滤波器的非线性应用扩展
δ-广义标记多伯努利
积分卡尔曼
高斯混合
多目标跟踪
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 采用随机矩阵的多扩展目标滤波器
来源期刊 西安交通大学学报 学科
关键词 滤波器 扩展目标 随机矩阵 跟踪算法
年,卷(期) 2015,(7) 所属期刊栏目
研究方向 页码范围 98-104
页数 7页 分类号 TN274
字数 语种 中文
DOI 10.7652/xjtuxb201507017
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 韩崇昭 西安交通大学电子与信息工程学院 349 5634 35.0 59.0
2 朱洪艳 西安交通大学电子与信息工程学院 36 531 14.0 22.0
3 韩玉兰 西安交通大学电子与信息工程学院 5 53 4.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (6)
节点文献
引证文献  (17)
同被引文献  (28)
二级引证文献  (23)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(2)
  • 引证文献(1)
  • 二级引证文献(1)
2017(7)
  • 引证文献(6)
  • 二级引证文献(1)
2018(11)
  • 引证文献(3)
  • 二级引证文献(8)
2019(18)
  • 引证文献(7)
  • 二级引证文献(11)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
滤波器
扩展目标
随机矩阵
跟踪算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
西安交通大学学报
月刊
0253-987X
61-1069/T
大16开
1960-01-01
chi
出版文献量(篇)
7020
总下载数(次)
0
总被引数(次)
81310
论文1v1指导