作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了对采煤机故障进行准确诊断研究,本文提出了一种基于优化支持向量机的采煤机故障诊断新方法,首先采用主成分分析法(PCA)对采煤机故障特征参数进行特征提取,其次应用特征数据进行基于支持向量机(SVM)的采煤机故障诊断模型训练,再次采用交叉验证方法对SVM模型参数进行优化,建立最优SVM采煤机故障诊断模型,最后通过对比实验,验证了基于优化SVM采煤机故障诊断模型的可行性和优越性。
推荐文章
基于DGA支持向量机的变压器故障诊断
DGA
支持向量机
变压器
故障诊断
参数优化
SVM模型
基于粒子群算法优化支持向量机汽车故障诊断研究
粒子群算法
支持向量机
汽车故障诊断
遗传聚类
井下综采工作面电牵引采煤机故障诊断
采煤机
故障诊断
专家系统
基于粒子群优化支持向量机的电梯故障诊断
电梯
故障诊断
最优小波包
粒子群算法
支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于优化支持向量机的采煤机故障诊断技术
来源期刊 山东农业大学学报(自然科学版) 学科 工学
关键词 采煤机 支持向量机 主成分分析 交叉验证 故障诊断
年,卷(期) 2015,(1) 所属期刊栏目
研究方向 页码范围 132-135
页数 4页 分类号 TD82
字数 3170字 语种 中文
DOI 10.3969/j.issn.1000-2324.2015.01.028
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘冲 17 38 3.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (24)
共引文献  (78)
参考文献  (5)
节点文献
引证文献  (9)
同被引文献  (26)
二级引证文献  (13)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(3)
  • 参考文献(3)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(4)
  • 引证文献(3)
  • 二级引证文献(1)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
2018(6)
  • 引证文献(3)
  • 二级引证文献(3)
2019(6)
  • 引证文献(2)
  • 二级引证文献(4)
2020(5)
  • 引证文献(1)
  • 二级引证文献(4)
研究主题发展历程
节点文献
采煤机
支持向量机
主成分分析
交叉验证
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
山东农业大学学报(自然科学版)
双月刊
1000-2324
37-1132/S
大16开
山东泰安市岱宗大街61号农业大学学报编辑部
1955
chi
出版文献量(篇)
3505
总下载数(次)
10
总被引数(次)
29464
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导