基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统的KNN缺失值填充算法存在没有利用样本间属性的相关性,也没有考虑到保持样本数据本身的结构和去除噪声样本的问题.本文提出利用训练样本重构测试样本从而进行最近邻缺失值填充的方法,该方法重构过程充分利用样本间的相关性,也用到LPP(保局投影)保持数据结构在重构过程中不变,同时引入l2,1范式用于去除噪声样本.在UCI数据集上的仿真实验结果表明,该方法比传统的KNN填充算法以及基于属性信息熵的Entropy-KNN算法有更高的预测准确度.
推荐文章
一种基于L2,1范数的PCA维数约简算法
维数约筒
主成分分析
L2,1-PCA
L2,1范数
拉格朗日乘子
基于l2,1范数原子选择的图像分块稀疏重构
压缩感知
稀疏表示
l2,1范数选择
图像重构
图像分块
匹配追踪
基于L2范数的局部保持投影算法
降维
局部保持投影
L2范数
一种基于L2,1范数的PCA维数约简算法
维数约筒
主成分分析
L2,1-PCA
L2,1范数
拉格朗日乘子
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于LPP和l2,1的KNN填充算法
来源期刊 广西师范大学学报(自然科学版) 学科 工学
关键词 缺失值填充 K最近邻 保局投影 重构
年,卷(期) 2015,(4) 所属期刊栏目
研究方向 页码范围 55-62
页数 8页 分类号 TP181
字数 4843字 语种 中文
DOI 10.16088/j.issn.1001-6600.2015.04.010
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 苏毅娟 广西师范学院计算机与信息工程学院 27 129 7.0 10.0
2 邓振云 广西师范大学计算机科学与信息工程学院 6 78 4.0 6.0
6 孙可 广西师范大学计算机科学与信息工程学院 5 25 3.0 5.0
10 尹科军 广西师范大学计算机科学与信息工程学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (11)
共引文献  (37)
参考文献  (11)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(4)
  • 参考文献(3)
  • 二级参考文献(1)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(3)
  • 参考文献(3)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
缺失值填充
K最近邻
保局投影
重构
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
广西师范大学学报(自然科学版)
双月刊
1001-6600
45-1067/N
大16开
桂林市育才路15号
48-54
1957
chi
出版文献量(篇)
3550
总下载数(次)
1
总被引数(次)
13610
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导