基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
本文研究了基于核技巧的L2,1范数非负矩阵分解在图像聚类中的问题.利用基于核的稀疏鲁棒非负矩阵分解方法,获得了算法良好的稀疏性和鲁棒性,提高了聚类性能,该方法也可以推广到文本聚类的应用.
推荐文章
基于l2,1范数原子选择的图像分块稀疏重构
压缩感知
稀疏表示
l2,1范数选择
图像重构
图像分块
匹配追踪
一种基于L2,1范数的PCA维数约简算法
维数约筒
主成分分析
L2,1-PCA
L2,1范数
拉格朗日乘子
基于平滑l0范数正交子空间非负矩阵分解
非负矩阵分解
正交性
聚类
稀疏表示
l0范数
基于L1/2范数约束增量非负矩阵分解的SAR目标识别
增量非负矩阵分解
合成孔径雷达
目标识别
L1/2范数约束
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于核的L2,1范数非负矩阵分解在图像聚类中的应用
来源期刊 数学杂志 学科 数学
关键词 非负矩阵分解 核技巧 L2,1范数 稀疏性 鲁棒性
年,卷(期) 2019,(3) 所属期刊栏目
研究方向 页码范围 440-454
页数 15页 分类号 O235
字数 7080字 语种 中文
DOI 10.3969/j.issn.0255-7797.2019.03.013
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李向利 桂林电子科技大学数学与计算科学学院 19 13 2.0 3.0
2 余江兰 桂林电子科技大学数学与计算科学学院 2 0 0.0 0.0
3 董晓亮 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (18)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1984(1)
  • 参考文献(1)
  • 二级参考文献(0)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(2)
  • 参考文献(2)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(3)
  • 参考文献(3)
  • 二级参考文献(0)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
非负矩阵分解
核技巧
L2,1范数
稀疏性
鲁棒性
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数学杂志
双月刊
0255-7797
42-1163/O1
16开
武汉大学
38-71
1981
chi
出版文献量(篇)
2723
总下载数(次)
2
总被引数(次)
6700
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导