原文服务方: 计算机测量与控制       
摘要:
用最优化算法逼近网络特征矩阵以获取网络的降维描述是网络团模糊聚类的一个重要途径;在最优化算法设计上,多余约束会过滤掉有意义的拓扑信息;以提高模糊聚类精度为目的,以引入新的点团关系度量为基础,建立了一个约束更少的最优目标函数,并用一种对称式矩阵分解算法实施逼近;新度量中保留了更多网络拓扑信息,所得聚类结果较传统的模糊隶属度更为精确,在两种计算机模拟网络上的实验证明了该方法能提高网络聚类精度,在两个真实网络上的实验也获得了很好的效果.
推荐文章
基于云计算与非负矩阵分解的数据分级聚类
云计算
分级聚类
MapReduce
非负矩阵分解
聚类算法
并行数据
基于邻域结构和对称非负矩阵分解的加权网络链路预测
加权网络
链路预测
对称非负矩阵分解
最小生成树
基于非负多矩阵分解的微博网络信息推荐
微博网络
推荐
非负多矩阵分解
好友
主题
非负矩阵分解及其改进方法
非负矩阵
非负分解
优化函数
迭代方程
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于对称非负矩阵分解的复杂网络模糊聚类
来源期刊 计算机测量与控制 学科
关键词 网络模糊聚类 团-点关系度量 扩散核 模糊隶属度 对称非负矩阵分解
年,卷(期) 2010,(12) 所属期刊栏目 设计与应用
研究方向 页码范围 2872-2874,2878
页数 分类号 TP18
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 潘泉 西北工业大学自动化学院 544 9437 45.0 77.0
2 张绍武 西北工业大学自动化学院 66 809 14.0 26.0
3 赵昆 西北工业大学自动化学院 6 8 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (13)
共引文献  (49)
参考文献  (8)
节点文献
引证文献  (4)
同被引文献  (4)
二级引证文献  (1)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(1)
  • 参考文献(1)
  • 二级参考文献(0)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(4)
  • 参考文献(1)
  • 二级参考文献(3)
2008(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
网络模糊聚类
团-点关系度量
扩散核
模糊隶属度
对称非负矩阵分解
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机测量与控制
月刊
1671-4598
11-4762/TP
大16开
北京市海淀区阜成路甲8号
1993-01-01
出版文献量(篇)
0
总下载数(次)
0
总被引数(次)
0
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导