作者:
原文服务方: 计算机应用研究       
摘要:
为了能够提升分解矩阵的稀疏表达能力, 提出了一种新的基于平滑l0范数的正交子空间非负矩阵分解方法。通过将分解矩阵的正交性及平滑l0范数约束同时引入矩阵分解的目标函数中一起进行优化, 大大降低了计算复杂度, 并提升了分解矩阵的稀疏表达能力。同时给出了分解矩阵的乘积更新迭代规则。通过在三个真实数据库(Iris, UCI, ORL)上的实验表明, 该方法在分解所得矩阵的稀疏表示方面及将其应用于聚类问题所取得的聚类效果方面优于其他方法。
推荐文章
基于L1/2范数约束增量非负矩阵分解的SAR目标识别
增量非负矩阵分解
合成孔径雷达
目标识别
L1/2范数约束
非负矩阵分解及其改进方法
非负矩阵
非负分解
优化函数
迭代方程
基于约束非负矩阵分解的混合象元分解新方法
混合象元分解
顶点成分分析
最小二乘
约束的非负矩阵分解
基于改进平滑l0范数的DOA估计算法
阵列信号处理
DOA估计
改进平滑l0范数
最速下降法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于平滑l0范数正交子空间非负矩阵分解
来源期刊 计算机应用研究 学科
关键词 非负矩阵分解 正交性 聚类 稀疏表示 l0范数
年,卷(期) 2013,(3) 所属期刊栏目 算法研究探讨
研究方向 页码范围 768-770,774
页数 4页 分类号 TP391
字数 语种 中文
DOI 10.3969/j.issn.1001-3695.2013.03.032
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 金忠 南京理工大学计算机科学与技术学院 72 1142 17.0 31.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (22)
共引文献  (78)
参考文献  (10)
节点文献
引证文献  (5)
同被引文献  (0)
二级引证文献  (0)
1977(2)
  • 参考文献(0)
  • 二级参考文献(2)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(1)
  • 二级参考文献(0)
1994(3)
  • 参考文献(0)
  • 二级参考文献(3)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(2)
  • 参考文献(1)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(3)
  • 参考文献(3)
  • 二级参考文献(0)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
非负矩阵分解
正交性
聚类
稀疏表示
l0范数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
论文1v1指导