极端学习机是一种新型的单隐藏层前馈神经网络模型,其输入权值和隐藏层阈值随机设置,其输出权值解析计算得到。因此,其运算速度是传统的 BP 神经网络的数千倍,而且具有良好的模型辨识能力。然而,极端学习机的输入权值和隐藏层阈值是随机设定的,可能不是使网络训练目标能达到全局最小值时的最优模型参数。针对此不足,本文采用最小二乘思想确定极端学习机的输入权值和隐藏层阈值。同时,将改进的极端学习机算法应用于电站锅炉的燃烧热效率建模,并与 BP、原始极端学习机、粒子群优化极端学习机和“教与学”优化极端学习机算法进行比较,证明了改进算法的有效性。